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Abstract— Identification of the anterior and posterior 

commissure is crucial in stereotactic and functional 

neurosurgery, human brain mapping, and medical image 

processing. We present a learning-based algorithm to 

automatically and rapidly localize these landmarks using 

random forests regression. Given a point in the image, we 

extract a set of multi-scale long-range textural features, and 

associate a probability for this point to be the landmark. We 

build random forests models to learn the relationship between 

the value of these features and the probability of a point to be a 

landmark point. Three-stage coarse-to-fine models are trained 

for AC and PC separately using down-sampled by 4, 

down-sampled by 2, and the original images. Testing is 

performed in a hierarchical approach to first obtain a rough 

estimation at the coarse level and then fine-tune the landmark 

position. We extensively evaluate our method in a leave-one-out 

fashion using a large dataset of 100 T1-weighted images. We 

also compare our method to the state-of-art AC/PC detection 

methods including an atlas-based approach with six 

well-established nonrigid registration algorithms and a publicly 

available implementation of a model-based approach. Our 

method results in an overall error of 0.84±0.41mm for AC, 

0.83±0.36mm for PC and a maximum error of 2.04mm; it 

performs significantly better than the model-based AC/PC 

detection method we compare it to and better than three of the 

nonrigid registration methods. It is much faster than nonrigid 

registration methods. 

 

I. INTRODUCTION 

The anterior commissure (AC) and posterior commissure 
(PC) are white matter fibers bundles that connect two cerebral 
hemispheres of the brain. AC and PC are important brain 
structures and crucial landmarks for stereotactic and 
functional neurosurgery, human brain mapping, and medical 
image processing [1]-[3]. For example, in deep brain 
stimulation (DBS) procedures, target locations could be 
determined by their relative position to the origin of a 
standardized coordinate system defined by AC, PC and the 
mid-sagittal plane [1]. Major stereotactic brain atlases, such as 
the Talairach and Tournoux atlas [4] and the 
Schaltenbrand-Wahren atlas [5], rely on AC and PC to 
establish the standard alignment of the brain. AC and PC could 
also be used to estimate an initial affine transformation 
between two volumes prior to any nonrigid registration [6].   
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In most current neuroimaging applications, AC and PC are 
selected manually on the MRI scans by the experts. However, 
this requires expertise and suffers from inter-expert variability, 
which can have a substantial effect on targeting in image 
guided neurosurgery [7]. Manual intervention also takes time 
and prevents the automated use of information about the 
AC/PC position by other image processing techniques such as 
registration. Over the years, several approaches have been 
proposed to automatically localize AC and PC on 3D MRI 
scans [6], [8]-[13]. All of these algorithms rely on successful 
segmentation of surrounding structures, localization of other 
anatomical landmarks, or image registrations. For example, in 
[6], [8]-[10], the corpus callosum was used to initialize the AC 
and PC positions. Ardekani et al. achieved the initialization by 
identifying the mid-sagittal plane and a landmark on the 
midbrain-pons junctions [11]. Han et al. and Verard et al. also 
relied on edge detection [6], [8]. In [12], [13], atlas-based 
nonrigid registration was performed to transfer the AC and PC 
positions from atlases onto subjects. However, segmentations 
of surrounding structures, landmark detection, edge detection, 
and nonrigid registration algorithms may fail because of large 
anatomical variations or image contamination such as noise or 
partial volume effect, leading to the failure of AC/PC 
detection. In addition, some of these methods require adjusting 
a large set of parameters and long runtimes, especially for 
registration based methods.  

Recently, learning-based methods using random forests 
have gained popularity for landmark detection. Random 
forests are an ensemble supervised learning technique for 
classification or regression.  It constructs a multitude of 
decision trees by evaluating a random subset of features at 
each node to split the data and aggregates the output of each 
tree as final prediction [14]. In [15], Dabbah et al. used 
random forests as a classifier to localize anatomical landmarks 
in CT. Hough forests, which combines random forests with 
generalized Hough transform, are applied to detect points of a 
point distribution model on 2D radiographs [16], and rough 
positions for centers of vertebrae in MR images [17]. Here, we 
investigate its application to AC/PC localization. Since AC 
and PC have different local appearances from other points, we 
hypothesize that a nonlinear regression can be used to estimate 
the relationship between the local appearance of a point and its 
probability to be the AC/PC.  

The algorithm we propose is fast, accurate, and robust. It 
also does not rely on any preprocessing of the images such as 
edge enhancement, nor does it require any segmentation or 
registration. Instead, we extract multi-scale textural features 
for points in the training images and build random forests 
regression models to learn the probability for each sample to 
be the AC/PC. We employ three-stage coarse-to-fine models, 
with the first one searching on a down-sampled image to 
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roughly localize the landmark and the second and third models 
to fine-tune the landmark position. We evaluate our algorithm 
extensively in a leave-one-out fashion using a large dataset of 
100 subjects. We also compare our method to the state-of-art 
AC/PC detection methods including an atlas-based approach 
with six well-established nonrigid registration algorithms and 
a publicly available implementation of a model-based 
approach. 

II. METHODS 

A. Image Data 

We select 100 subjects from the data repository we have 
created over a decade for DBS surgeries. All images in our 
data set are T1-weighted sagittal MR image volumes with 
approximately 256×256×170 voxels and 1 mm in each 
direction, acquired with the SENSE parallel imaging 
technique (T1 W/3D/TFE) on a 3 Tesla Phillips scanner (TR = 
7.92 ms, TE = 3.65 ms). These images have similar pose with 
small differences in head orientation and position. They also 
have similar field of view (FOV), i.e., they cover the entire 
head. All images have been acquired as part of the normal 
delivery of care and every subject was consented to participate 
in this study. 

For each subject, AC and PC points were manually 
identified by two raters. These two raters followed the same 
protocol to select AC/PC and were given sufficient time for 
accurate localization. The inter-rater variability is 
0.57±0.47mm for AC and 0.57±0.37mm for PC. Gold 
standard AC/PC points are computed as the average of the 
selections by the two raters and used for training and testing in 
the following sections.  

B. Problem Formulation 

We use a voxel-level training solution based on regression 
forests for each landmark. For each voxel, we extract a set of 
features that describes contextual variation at different scales, 
as proposed by Pauly et al. [18]. This is realized by applying a 
random displacement to this voxel  , calculating the mean 
intensities of a 3D cuboidal region   

  centered on   and of a 
similar region   

   
 of the same size but centered on the 

displaced voxel,  and subtracting these two: 
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where   is the intensity, and   is the current scale, i.e., the size 
of the cuboidal region. Four scales are used and they 
correspond to window sizes of 4, 8, 16, and 32. This process is 
repeated        times to obtain the feature set {  }   

 .  

Each voxel is associated with a probability   to be the 
landmark that the model is trained to detect. This probability 
follows a truncated Gaussian distribution according to its 
Euclidean distance   to the gold standard of this landmark: 

  {

 

√   
 
 

  

        

         

 (2) 

where     is the standard deviation. We truncate the 
probability function to speed up the training process. 

Given a number of training pairs { ⃗    }   
 , the random 

forests aims to learn a nonlinear mapping from the feature 

space { ⃗} to the probability space { }. Hence the landmark 
detection problem can now be formulated as finding the voxel 
associated with the highest probability. This voxel indicates 
the most likely position of the AC/PC. 

C. Regression Forests 

We use 20 regression trees to construct the forests. For 
each tree, a bootstrap of two thirds of training samples is 
randomly selected and fed to the root node of the tree. Given 

the training samples {  ⃗⃗⃗⃗    }   
  

 at a particular node, we seek 
to select a feature    and a threshold   to best split the data. 
The splitting criterion minimizes: 

            {     
   }      {     

   }  (3) 

where     is the mean squared error. A subset of 500 
features is randomly selected to examine the splitting 
threshold. The tree stops growing if the number of samples 
arriving at leaf nodes is smaller than 5 or if the best split 
threshold cannot be found.  

Each leaf of the regression trees stores the mean   of all 
samples arriving at that node and this is used as predictor. 
When a test sample comes, each tree contributes to a 
prediction and the final prediction is made by averaging the 
outputs of all trees.  

D. Training Phase 

We build three stage coarse-to-fine models for AC and PC 
separately, one on down-sampled by 4 images, one on 
down-sampled by 2 images, and one on full resolution images. 
Since all images in our dataset have similar pose and FOV, 
landmarks could be localized in a region of interest instead of 
searching through the entire image. Hence when training the 
model, for each image, we only evaluate a set of points on a 
grid within a region of interest centered on the gold standard 
AC/PC. Empirically we choose the size of this region to be a 
15×15×15 voxel

3
 cube for each resolution level. This covers 

up to a 60×60×60 mm
3
 area at the coarsest level, and we have 

found it large enough to localize the landmark with the 
variation in AC/PC positions we have observed across all 
images in the dataset. 

E. Testing Phase 

Given a test image, following the hierarchical approach, 
we first down-sample the image by 4 and start testing using 
the model built at this resolution level. We initialize the search 
center for this model by averaging the gold standard landmark 
positions of all training subjects, and search within a 
21×21×21 window on a regular grid. A response map is 
generated, displaying the probabilities of the voxels to be the 
trained landmark. The voxel associated with the highest 
probability is then used as the search center for the next 
resolution. The final landmark position is the voxel location 
with the highest probability at the full resolution level. 

F. Comparison to Other Methods 

We compare our results with those obtained by atlas-based 
registrations, including affine only, and affine + nonrigid 
registrations, a technique routinely used for automatic 
identification in DBS procedures [12]. We choose one atlas 
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Figure 3.  Boxplot of errors for PC. 

 

 
Figure 2. Boxplot of errors for AC. 
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Figure 1.  Example of the response map for AC. 

 

used by Pallavaram et al. [12] to be the reference and project 
its AC and PC points onto the 100 subjects through 
registration. An affine transformation is estimated first using 
intensity-based technique. The results obtained after this step 
are visually checked and corrected, if necessary. Then 
nonrigid registration is performed with a series of 
well-established algorithms, including the Adaptive Basis 
Algorithm (ABA) [19], the Adaptive Basis Algorithm with 
bounding box (LABA) [19], Diffeomorphic Demons (DD) 
[20], Symmetric Normalization (SyN) [21], Fast Free Form 
Deformation (F3D) [22], and Automatic Registration Toolbox 
(ART) [23]. A detailed description of those algorithms can be 
found in [24]. We also compare our method to a model-based 
method that has been recently proposed and we refer to it as 
MD (Model-based Detection). To do so, we use a publicly 
available implementation of this technique [11]. 

III. RESULTS 

We have conducted a leave-one-out validation, which uses 
99 volumes for training and the last one for testing, and repeats 
this process 100 times.  

 A qualitative example of the response maps for AC in one 
test image at the full resolution level is shown in Fig. 1, with 
the map overlaid on top of the original image and the cross 
indicating the gold standard AC point. As shown in Fig. 1, this 
gold standard point has a high probability and is very close to 
the peak of the map (0.48 mm).   

To quantitatively evaluate the accuracy of the algorithm, 
we use the 3D Euclidean distance between the automatically 

detected landmarks and the gold standard as a measure of error. 
We refer to our algorithm as RF (Random Forests) in the 
following text. Fig. 2 shows the box plot of errors using 
different methods for AC and Fig. 3 for PC. There are some 
outliers with errors beyond the maximum range of the y axis 
(12 mm), thus not shown in these figures. This includes 2 
cases using Affine, 4 cases using MD for AC, and 4 cases 
using MD for PC. We also report error statistics for AC in 
Table I and PC in Table II. We have excluded those 
above-mentioned outliers with errors larger than 12 mm for 
Affine and MD when computing their mean, maximum, and 
standard deviations in order not to bias the comparisons. Table 
I and II demonstrate that our method leads to smaller mean, 
maximum, and standard deviation of errors for AC and PC 
compared to registration-based results including Affine, ABA, 

1 

TABLE I. STATISTICS OF ERRORS BETWEEN THE AC 

DETECTED AUTOMATICALLY USING DIFFERENT METHODS 

AND THE GOLD STANDARD AC POSITIONS 

Error ( ): 

(mm) (AC) 

Cases 

with 

  <1 

Cases 

with 

1   <2 

Cases 

with 

2    <3 

Cases 

with 

  3 

Mean Max. Std. 

RF 67 31 2 0 0.84 2.04 0.41 

Affine 0 1 2 97 5.96 11.06 1.87 

ABA 43 53 4 0 1.12 2.35 0.48 

LABA 73 25 2 0 0.83 2.73 0.40 

DD 29 32 22 17 1.96 10.18 1.58 

SyN 94 6 0 0 0.60 1.10 0.24 

F3D 67 33 0 0 0.86 1.98 0.39 

ART 40 52 8 0 1.19 2.99 0.60 

MD 17 65 13 5 1.58 8.26 0.82 

 

TABLE III. P VALUES OF WILCOXON TESTS BETWEEN THE 
ERRORS OF AC/PC DETECTED BY OUR METHOD AND ERRORS 

OF THOSE DETECTED BY OTHER AUTOMATIC METHODS 

P Affine ABA LABA DD SyN F3D ART MD 

AC 0.00 0.00 0.65 0.00 1.00 0.32 0.00 0.00 

PC 0.00 0.00 1.00 0.00 1.00 1.00 0.01 0.00 

 

TABLE II. STATISTICS OF ERRORS BETWEEN THE PC 
DETECTED AUTOMATICALLY USING DIFFERENT METHODS 

AND THE GOLD STANDARD PC POSITIONS 

Error ( ): 

(mm) (PC) 

Cases 

with 

  <1 

Cases 

with 

1   <2 

Cases 

with 

2    <3 

Cases 

with 

  3 

Mean Max. Std. 

RF 60 40 0 0 0.83 1.71 0.36 

Affine 1 13 28 58 3.68 10.90 1.88 

ABA 38 51 5 6 1.33 4.23 0.75 

LABA 93 7 0 0 0.57 1.18 0.23 

DD 23 43 22 12 1.83 6.25 1.15 

SyN 99 1 0 0 0.47 1.07 0.19 

F3D 90 10 0 0 0.66 1.61 0.28 

ART 54 43 2 1 1.02 3.04 0.49 

MD 51 41 3 5 1.13 10.91 1.09 
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DD, and ART, as well as the AC/PC detection method MD.  

In addition, we perform one-sided paired Wilcoxon 
signed-rank statistical test to test whether or not our method 
leads to errors that are smaller than those obtained with the 
other techniques. The p values are shown in Table III. P values 
smaller than the significance level of 0.05 are marked in red 
bold, suggesting that the errors of our method is statistically 
significantly smaller than that of the other method. As shown 
in Table III, our method significantly reduces the AC/PC 
localization errors compared to the registration-based 
approaches using Affine, ABA, DD and ART. It also 
outperforms the AC/PC detection method MD.   

All computations are done on the Advanced Center for 
Computing and Research Education (ACCRE) Linux cluster 
at Vanderbilt University. The approximate CPU runtime for 
our algorithm is 8 seconds on a standard PC using one CPU 
core and 4GB RAM, whereas it takes 4.5, 25, 9, 40, 97, 45, 30 
minutes for Affine, ABA, LABA, DD, SyN, F3D, and ART 
respectively, and 25 seconds for MD. 

IV. DISCUSSION AND CONCLUSION 

In this paper, we propose a learning-based method to 

automatically detect AC and PC landmarks in MRI brain 

scans using random forests regression. Our approach does not 

require any pre-processing steps and does not rely on any 

segmentations or registrations. Results of the leave-one-out 

experiments have shown that our approach is accurate and 

robust, with 0.84±0.41mm errors for AC, 0.83±0.36mm 

errors for PC, and a maximum error of 2.04 mm.  

We have also compared our approach to single atlas based 

methods using six well-established nonrigid registration 

algorithms and also with a model-based approach proposed 

recently. We have found that our algorithm outperforms three 

nonrigid registration methods (ABA, DD, and ART) as well 

as the AC/PC detection method MD in terms of accuracy and 

robustness; the improvements are statistically significant. 

Other registration methods (LABA, SyN, and F3D) achieve 

better accuracy than ours. However, they rely on good affine 

initialization. In this study we have manually corrected 9 out 

of the 100 affine registrations so as not to bias the nonrigid 

registration results. However, in an automatic system such 

inaccurate affine registration may deteriorate the performance 

of nonrigid registrations and cause a failure in ACPC 

detection.    

Another advantage of our approach is the speed. Although 

registration methods such as SyN may be more accurate, they 

generally take substantially longer than our algorithm. The 

algorithm is implemented in C++ with Matlab interfaces, and 

could potentially be speeded up with parallelization. Our 

method is also extendable to other image modalities by 

building models for that particular image set. Future work 

will include detection of AC/PC in other modalities. 
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