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Abstract— This paper presents a method to automatically 

estimate lung tidal volumes from the acoustic signals generated 

in the respiratory track. The signal is measured with an acoustic 

based sensor placed in the suprasternal notch. The method does 

not require any previous knowledge or modelling of the 

individual respiratory track, and relies on just one calibration 

parameter. The proposed algorithm is tested on 316 respiratory 

phases obtained from 4 volunteers. The subjects were 

simultaneously wearing a Wright respirometer which was used 

as a gold standard for comparison.  Agreement between the two 

methods was assessed with Bland-Altman techniques. The 

results show the potential the technique has, integrated with a 

small acoustic sensor, for less-intrusive and even remote and/or 

continuous monitoring of lung tidal volumes.  

 

I. INTRODUCTION 

INCE the invention of the stethoscope in 1816, extracting 

information about the lungs from sound signals generated 

in the process of respiration, has been a very active field of 

research. Specifically in the last few years, great progress has 

been made by groups like Moussavi’s [1-5], Wodicka’s [6-8], 

Gavrieli’s [9-10] and others [11-13], on modelling 

respiratory flow using sound signals measured with acoustic 

sensors placed either on the chest or on the trachea. 

Quantitative measure of airflow is unarguably very useful due 

to its application in clinical areas which are relevant to a 

significant percentage of the population, such as diagnosis of 

sleep apnoea. There are however other respiration related 

parameters, such as lung volumes, that would also be of 

interest in a variety of contexts, and have not received as 

much attention. Lung volumes could in principle be extracted 

from airflow, as reported in [12], so should this approach be 

followed the quality of the model for quantitative airflow 

measurement would most certainly affect the accuracy on 

determining the lung volumes. However, when lung volumes 

are to be calculated by automatic means, accurate airflow 

determination is not the only factor affecting accuracy. The 

temporal characteristics of the signal and most specifically 

precise determination of integration times are also equally 

important. These integration times are not difficult to 

determine visually, mostly when dealing with artefact free 

segments of the signal. The problem becomes significantly 

more challenging when lung volumes have to be calculated 

automatically.  

The main aim of this paper is to show the initial results of a 

simple method to automatically estimate lung tidal volumes 

using the outputs from a very small wireless acoustic based 

sensor placed on the suprasternal notch. The results also show 

that it is possible to obtain a good agreement with the values 

obtained using respirometry as the gold-standard, just by 

assuming a linear model with one calibration parameter. 

II. ALGORITHM DEVELOPMENT 

We first collected around 5-10 minutes of respiratory data 

from 4 subjects with a proprietary breathing monitoring 

technology (WADD) created by our group [14-15], and 

simultaneously with a Wright respirometer, for which 

subjects were wearing a mask. The WADD operation is based 

on sensing the acoustic signal generated by breathing with an 

MEMS microphone housed in a customized acoustic 

chamber, interfacing with also customized low power 

electronic blocks. The overall system is wireless, weighs less 

than 9g (including a biocompatible housing) and can operate 

continuously for over 48 hours. It attaches to the neck with a 

hydrocolloid adhesive approximately (2cm x 2cm) size. The 

preferred attachment is on the suprasternal notch, although 

this can be changed to the side of the neck in those subjects in 

which this location is not possible due to, for example loose 

skin or short neck. Apart from the raw signal, the WADD also 

provides automatic information about the respiratory signal, 

including its duration, presence or absence, temporal related 

parameters such as beginning or end of respiratory phases, 

and noise values. Fig. 1(a) shows a picture of one of the 

investigators wearing the current version of this device. Fig. 

1(b) shows a schematic representation of the test set-up. Since 

the respirometer did not have an automatic output the 

readings were taken every cycle and recorded with a video 

camera. These readings included starting time, end time, 

initial volume, final volume, delta volume (difference 

between final and initial volumes) and average tidal volume 

(arithmetic mean of all delta volumes detected during the 

recording period). The subjects were instructed to remain in a 

sitting position, but they had freedom to do any kind of 

movement whilst being on that position. No particular effort 

was made to reduce environmental acoustic artefacts, so all 

the experiments were run under varying background noise 

conditions. Subjects were also instructed to try to change the 

depth of breathing, at any time they chose without warning. 

In the initial experiment, the energy from the acoustic 

signal from expiration segments was automatically obtained 

from the WADD. This energy was plotted against the tidal 

volume values obtained from the respirometer. An illustration 

of the results obtained from one of the subjects is shown in 

Fig. 2. From the graph it can be observed that points with 

significantly different energies corresponded to similar tidal 

volumes, with a correlation coefficient R2= 0.5567. 

 
 (a)  (b) 

Fig. 1: (a) Investigator wearing the WADD sensor. (b) Tidal volume 

measurement set-up. 
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Fig. 2: Initial results: tidal volume values obtained from the respirometer 

versus acoustic energy integrated over underestimated duration (see Fig. 3 

and related discussion for explanation). 

 
Fig. 3: Errors caused by underestimation of the integration time. 

This was a positive but still poor result. By isolating points 

corresponding to a same tidal volume but very different 

energy, it was observed though that even when the energy 

was different within the overall signal bandwidth (100Hz to 

2kHz), the scatter was greatly reduced if the calculation was 

restricted to a narrower band, more specifically 600Hz to 

700Hz. The explanation for this is that, although there is an 

important breathing frequency content in the other bands, 

mostly in the lower one, the lower band also has stronger 

artefact signals frequency components. Hence, even in those 

cases in which the signal has a large signal to noise ratio and 

the breathing segments are easily identifiable, the remaining 

overlapping frequency components due to artefacts can 

significantly affect the energy calculation. This is not just 

because of the effect that they have in the overall power- 

which can in fact be very small, mostly if previous artefact 

rejection techniques have been applied- but rather because of 

the effect they can have in the automatic calculation of the 

integration time. Small variations in the estimation of start 

and end times can considerably affect the calculation of the 

energy. In the majority of cases, the energy is underestimated 

because part of the signal is not taken into account. A diagram 

illustrating this is shown in Fig. 3.  

 A second reason that was found to explain the lack of 

accuracy of the initial results was related to the offset 

observed in the fitting curve. That offset had no physiological 

explanation since absence of breathing flow should relate to 

absence of acoustic energy. The non-zero value accounted for 

the energy of signal artefacts originated from both other 

physiological as well as environmental sources; and also the 

electrical noise floor of the sensor and electronics around 

them. Although in the WADD artefact rejection is carried out 

at the hardware level which optimizes the signal to noise 

ratio, there are still residual signals that affect the energy 

calculation. In order to compensate for this, the algorithm 

would take periods of non-breathing (this was one of the 

outputs of the WADD), calculate the energy of the signal in 

those periods, and from there the power. This power would be 

multiplied by the duration of the signal during the breathing 

segment, and the resulting energy would be subtracted from 

the original energy in those segments. Just by doing this, 

together with the band restriction, the correlation coefficients 

increased to over 0.76 in all algorithm development cases 

(0.76-0.91), with the lowest correlation coefficient found in 

the experiment in which the offset had been the least 

successfully automatically removed, which proved the 

hypothesis that offset removal is needed.  

A flow diagram of the final algorithm is shown in Fig. 4. 

The algorithm finds the energy of those segments of signals 

that have already been identified as breathing by the WADD, 

after filtering it, so that it is restricted to the 600Hz to 700Hz 

band, for the reasons explained above. The approach can be 

summarized as follows:  

1) The input signal, obtained from the WADD is bandpass 

filtered and rectified (grey trace, Fig. 5). 

2) The envelope of the signal is obtained (black trace, Fig. 5). 

3) The algorithm searches the minimum of the envelope 

signal since the beginning of the current iteration and waits 

until it rises to a point (‘A’ in Fig. 5) as twice of the 

minimum or half of the maximum value from previous 

iteration (i.e. value of point ‘C’ from the previous segment, 

see step 5). 

4) Once the envelope signal rises over twice the value of the 

minimum point calculated in 3, as long as the signal does 

not fall below twice the minimum, monitoring the change 

of the signal’s slope, the algorithm searches a turning point 

as the integration starting point (‘B’ in Fig. 5) within the 

range of +/- 0.2s referred to the point when the signal 

becomes twice the minimum. The slope is evaluated with a 

running window of half this time. If there is no major 

change on the slope within that range, the start of 

integration is set to the point 0.1s prior to point ‘A’. 

5) After the integration starting point is confirmed, the 

algorithm looks for the maximum of the envelope signal 

and waits until it falls to a point (‘C’ in Fig. 5) half of the 

maximum value or point ‘A’. 

6) When the signal falls below the point ‘C’, the algorithm 

starts searching for the integration ending point (‘D’ in Fig. 

5) by locating the position when the slope (same window 

length as step 3) of the envelope signal becomes positive. 

7) The energy is obtained integrating the envelope of the 

signal between points ‘B’ and ‘D’.  

8) The power of the noise signal, which is also an output of 

the system, is filtered within the same frequency band and 

integrated within the same period of time. 

9) The noise energy is subtracted from the value of the 

breathing signal energy obtained in step 7. 

III. RESULTS 

The algorithm was tested on 316 breathing phases from 4 

different subjects. The subjects were laying facing up. The 

first initial ten readings were used to calculate the gain and 

residual offset of the linear model via least mean squares 

fitting. The rest of the points were used to test the automatic 
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performance. The results are shown in Fig. 6. It can be seen 

that in all cases the offset has been reduced to relatively low 

values, which illustrates that the noise cancellation strategy 

does work Without this the values of the offset was always 

larger than 0.3.  
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Fig. 4: Flow diagram of locating starting and ending point of integration 

period for tidal volume estimation. 

 
Fig. 5: An example of finding the correct integration period. 

Statistical Analysis: Although the number of subjects in this 

study was low and therefore the method would need to be 

tested in a larger population to have significant power, 

Bland-Altman plots were obtained to explore whether this 

technique could have the potential to substitute the 

respirometer for quantification of tidal volumes. Fig. 7 shows 

the results for the four different subjects. Table I summarizes 

the values for the bias (residual offset), standard deviations 

and limits of agreement for the different figures. 96% of the 

points fall within the limits of agreement. 

 
Fig. 6: Measured tidal volume obtained from the respirometer versus 

automatic estimated values. 

 
Fig. 7: Difference between measured tidal volume obtained from 

respirometer and its corresponding automatic estimated value against the 

mean of two methods. 

Table I: Statistical results for automatic tidal volume estimation 

Subject Bias d 
Standard 

deviation s 

Limits of Agreement 

d+2s d-2s 

(a) 0.1711 0.0228 0.2167 0.1255 

(b) 0.1289 0.0613 0.2515 0.0063 

(c) 0.0277 0.0189 0.0655 -0.0101 

(d) 0.0361 0.0195 0.0751 -0.0029 
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IV. DISCUSSION 

Although this is preliminary work it does show that it is 

potentially possible to automatically obtain lung volumes 

without a previous knowledge of flow, or characterization of 

physiological parameters, with just one calibration parameter 

(or maximum two if the residual offset is not acceptable). In 

agreement with literature, it was found that this parameter 

depended on whether the person was sitting, standing or 

laying down, although it remained constant if the person was 

in one fixed position. It was not necessary though for the 

person to be completely still, although the reason for this 

could be that the WADD output signals were already 

“artefact free”. The results marginally improved if they were 

averaged over several breathing phases. 

Even though the work presented on this paper mostly 

characterizes tidal volumes under normal or forced 

uninstructed shallow breathing, in principle there is nothing 

indicating that it would not be possible to extract other 

respiratory volumes and parameters [17] following the same 

method. For example, the Force Expiratory Flows (FEV) 

could be calculated integrating the signal during a fixed 

predetermined length of time according to the definitions of 

these volumes (whilst the subject follows the same 

instructions as in spirometry). FEV1 could be obtained by 

fixing the end time to the integration time to 1s after the start 

point. The Forced Vital Capacity (FVC) would be just the 

value obtained after the subject is instructed to force 

expiration. The Maximal Voluntary Ventilation (MVV) 

could be obtained integrating the whole signal (including 

respiratory pauses) for a fixed minute. The Force Expiratory 

Time (FET) could be obtained from the time distance 

between the two minima which determine the beginning and 

end of the integration period. The Slow Vital Capacity (SVC) 

would be the value of the tidal volume obtained while the 

person is asked to exhale slowly after slow maximum 

inhalation. Furthermore, because some of these volumes are 

“forced situations” during which the subject is asked to 

breathe in a particular way, they do not need to be obtained 

continuously, and they can also be obtained in a certain 

position for which the gain parameter is known. The WADD 

has the option of adding a time marker within the signal. This 

could be used to mark the time at which the test is taking 

place so that the reading is known to correspond to a 

particular type of parameter. This, together with flow values 

which could be obtained applying algorithms such as the ones 

presented in [2-5] on the same signal, could potentially have 

application for, amongst others automatic, early or remote 

diagnosis of COPD.  

V. CONCLUSIONS 

This paper has shown the initial results of an automatic 

method to determine tidal volumes from the acoustic signal 

obtained with the WADD breathing monitoring system. The 

algorithm uses as inputs signal segments that the WADD has 

already identified as either breathing phases of respiratory 

pauses, as well as noise values. The performance results of 

this algorithm show that it is possible to obtain a linear model 

that provides a good estimation of tidal volume based on the 

energy of the acoustic signal calculated within one particular 

band. However, this linear fitting can severely degrade if the 

start and end point of the signal used for integration are not 

properly determined, which makes the problem of automatic 

detection a non-trivial one. The algorithm proves to 

efficiently deal with this issue. It is also shown that by 

subtracting a noise related value the offset reduces to almost 

zero, which improves the accuracy of the model. This value is 

obtained by filtering and integrating the power of the noise 

signal provided by the WADD within the same band and in 

the same period of time. 
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