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Abstract— In applying mental imagery brain-computer in-
terfaces (BCIs) to end users, training is a key part for novice
users to get control. In general learning situations, it is an
established concept that a trainer assists a trainee to improve
his/her aptitude in certain skills. In this work, we want to
evaluate whether we can apply this concept in the context of
event-related desynchronization (ERD) based, adaptive, hybrid
BCIs. Hence, in a first session we merged the features of a high
aptitude BCI user, a trainer, and a novice user, the trainee, in
a closed-loop BCI feedback task and automatically adapted the
classifier over time. In a second session the trainees operated the
system unassisted. Twelve healthy participants ran through this
protocol. Along with the trainer, the trainees achieved a very
high overall peak accuracy of 95.3 %. In the second session,
where users operated the BCI unassisted, they still achieved
a high overall peak accuracy of 83.6 %. Ten of twelve first
time BCI users successfully achieved significantly better than
chance accuracy. Concluding, we can say that this trainer-
trainee approach is very promising. Future research should
investigate, whether this approach is superior to conventional
training approaches. This trainer-trainee concept could have
potential for future application of BCIs to end users.

I. INTRODUCTION

Users of event-related desynchronization (ERD) based
brain-computer interface (BCI) systems [4] often need a lot
of training. Especially, this was reported in end users, e.g.,
in patients with spinal cord injury [17] or with cerebral
palsy [13]. Just recently, we could show that the use of
adaptive classifiers increases BCI performance in a relatively
short amount of time [5].

Usually when someone wants to learn new skills, a trainer
or teacher is ready to assist. An everyday example would
be learning to drive a car. Much more interaction between a
trainer, a device and the trainee for example takes place when
this person wants to learn how to fly a helicopter. Here, a
trainer assists the young pilot using all the handles and levers,
until the trainee is able to master flying the helicopter.

A hybrid BCI allows a user to use several input signals
with at least one BCI channel to control a certain device
or application [16], [11]. Besides classical BCI approaches
hybrid BCIs gained more and more importance over the last
years. Individuals with severe motor impairment can benefit
from such a system as it allows for longer/better control of
the device [19]. Various types of hybrid BCIs have been
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reported and are applied for the control of neuroprostheses,
wheelchairs and spelling systems [8], [9]. In general a hybrid
BCI can integrate different types of input signals (biosignals,
assistive devices,...). However using two or more brain
signals at the same time also constitutes a hybrid BCI.

Recent publications showed a hybrid BCI system operated
by two different users [3]. The authors describe a multi
user game scenario. In detail, two users are provided with a
BCI system that combines the users’ signals at the level of
decision making. Both users are about to play a soccer game
by imagining right and left hand movements.

Based on these ideas and other previous work, we want
to use an adaptive hybrid BCI system in a trainer-trainee
situation. A trainer assists a trainee to attain control with a
BCI system. In a first session, brain patterns of a trainer and
a trainee were merged into one classifier. Hence, the trainee
was assisted by the trainer to experience BCI usage. In a
second session, the trainee got full control over the adaptive
BCI.

II. METHODS

A. Participants

Twelve healthy BCI novice volunteers, ”trainees”, (age
19 - 29 years, mean 22.5±2.8 SD, 6 female) and a BCI
experienced user, ”trainer”, participated in this study. All
were right handed. None of the participants had known
diseases; they had normal or corrected to normal vision
and were paid for their participation. At the beginning, all
volunteers were informed about the aim of the study and
they gave written consent to participate. The experiment was
approved by the local ethics committee.

B. EEG recording

During the first session, we recorded EEG with two biosig-
nal amplifiers (g.USBamp, Guger Technologies, Graz Aus-
tria). We attached 26 active electrodes (g.LADYbird, Guger
Technologies, Graz Austria), half of them to the trainee and
the other half to the trainer. The electrode arrangement was
identical for trainee and trainer: Three Laplacian derivations
centered at the international 10-20 system positions C3, Cz
and C4, respectively. We attached the reference electrode
at the left ear lobe and the ground electrode at position
AFz. The first amplifier was connected with the trainee’s
electrodes and the second amplifier was connected with the
trainer’s electrodes (Figure 1). The Amplifiers recorded the
data at a sample rate of 256 Hz. We used a band filter
between 0.5 and 100 Hz and a notch filter at 50 Hz. All
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the settings were identical in the second session, except that
we recorded only the trainee’s EEG.
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Fig. 1. Schematic representation of the experimental setup.

C. Experimental paradigm

In a cue-guided, two-class Graz-BCI motor imagery
paradigm ([18], see Figure 2), the EEG signals from both
users were recorded simultaneously, merged and translated
into visual online feedback. This feedback was provided to
both, trainer and trainee. Figure 1 shows a schematic depic-
tion of the setup, with the two users sitting back to back each
looking at the same visual feedback as generated online. In
this trainer-trainee situation, four runs containing 20 trials per
class were performed. After this training, trainees performed
four runs unassisted.
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Fig. 2. Overview of the cue-guided motor imagery paradigm. For the
reference period, the participants were instructed to visually fixate the cross
and otherwise do nothing. Two types of visual cues, ”arrow down” and
”arrow right”, appeared in random order. Both the BCI trainer and BCI
trainee were instructed to imagine sustained kinaesthetic plantar extension
of both feet for the cue-type ”arrow down” and to imagine sustained
kinaesthetic palmar grasp of the right hand for the cue-type ”arrow right”
for the whole imagery period. After less than five minutes, the system auto-
calibrated and provided visual feedback, proportional to the LDA distance
in form of a white-colored bar for correct activity as in [5] and [1].

D. Adaptive BCI online calibration

An auto-calibration and online adaptation system was
used and worked as follows: The co-adaptive ERD BCI
first (1) collected ten artifact-free trials for every one of
the two classes without providing feedback. Then, (2) it
automatically calibrated by training a linear discriminant
classifier (LDA, [2]) based on logarithmic band-power fea-
tures from both users and from then provided visual feedback
online. From then on, the co-adaptive ERD BCI (3) retrained
the underlying LDA classifier, whenever five new artifact-
free trials per class were available.

The automatic online calibration step was identical to
our previous work [5]. The following procedure was carried
out separately for both users. Every calibration step always
operated on all data collected thus far. The algorithm first
extracted logarithmic band-power features (averaging over
one second) in the frequency bands 10 to 13 Hz and 16 to
24 Hz [14] from every one of the three Laplacian derivations
at C3, Cz and C4. From these six features, the system then
selected the single feature that scored the highest separability
according to the Fisher criterion [2] in the time window
between second 4 to 8 relative to trial onset.

The system then trained an LDA classifier based on both
of the users’ single selected features. The best time-segment
to set-up the LDA was selected in a leave-one-out cross-
validation (LooCV): First, the system split the time-window
from second 4 to 8 relative to trial onset into eight adjacent
0.5 s time-windows and performed LooCV for every one of
them. In every LooCV step, the system trained an LDA
classifier for the feature values of the two conditions for the
current 0.5 s time segment of all trials in the training fold and
applied the resulting classifier model to all time-samples in
the current test-trial. The time-segment that scored the overall
highest median accuracy between second 4 and 8 relative to
trial onset across all test-trials was selected to finally train
the LDA classifier that was from then on used online.

For the evaluation of the trainee in the second session,
signal processing was identical, however, only his/her best
feature was used for the LDA.

E. Outlier rejection

The system regularly performed trial based outlier re-
jection to use only artifact-free trials for online re-
calibration [5]. The approach worked iteratively: First (1)
the algorithm computed the mean logarithmic band-power
both across time (window second 4 to 8 relative to trial
onset) and trials separately for every condition and for every
one of the six features. Then the algorithm (2) removed
exactly one trial. Specifically, the trial that had its logarithmic
band-power average over time for one feature lay farthest
outside three times the standard deviation for this feature
and condition. If no more trials had feature values outside
the threshold the algorithm stopped. Otherwise the algorithm
continued to reanalyze the reduced data set according to step
(1).

F. Evaluation and statistical comparison

Peak, mean and median classification accuracies were
calculated from the window between second 4 and 8 relative
to trial onset of the last 30 trials per class. A rank sum
test (Wilcoxon rank sum test) was performed to assess
differences in the classification accuracies between trainees
together with trainer and trainees alone. The visualization of
the ERD patterns was performed according to [6].

III. RESULTS

Classification results are shown in Table I. In the first
session, trainees with trainers achieved on average 95.3 %
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(peak), 88.8 % (median) and 87.2± 6.8 % (mean±SD). In
the second session, trainees were using the system unassisted.
They reached an average classification accuracy of 83.6 %
(peak), 71.5 % (median) and 69.7± 8.5% (mean±SD), re-
spectively. Using a Wilcoxon rank sum test, it could be
shown that trainees performed significantly (p < 0.01) better
together with a trainer than alone. Figure 3 presents the
peak classification accuracy with and without trainer support.
Figure 4 depicts the median classification results with and
without trainer support. Figure 5 shows the trainer’s ERD
maps for the different classes. Investigating the features
used, it could be seen that the features of the trainer were
stable over all 10 sessions (see the clear focused ERD maps,
Figure 5).

TABLE I
BINARY CLASSIFICATION ACCURACIES OF THE FIRST SESSION (TRAINER

& TRAINEE) AND THE SECOND SESSION (TRAINEE ONLY). LAST 30
TRIAL PER CLASS USED FOR EVALUATION.

ID Trainer & Trainee - Session 1 Trainee alone - Session 2
peak median mean SD peak median mean SD

P1 100 96.7 93.9 6.8 88.3 80.0 76.5 9.6
P2 88.3 76.7 76.7 6.5 61.7 50.0 48.0 5.9
P3 100 95.0 93.4 7.7 98.3 85.0 82.2 11.3
P4 86.7 76.7 75.8 5.5 83.3 65.0 64.5 9.4
P5 100 98.3 93.7 10.9 96.7 86.7 82.5 11.0
P6 98.3 91.7 87.9 9.3 91.7 81.7 74.7 14.3
P7 100 93.3 92.2 6.7 80.0 68.3 66.9 6.0
P8 100 98.3 96.9 5.3 91.7 81.7 81.2 6.4
P9 85.0 75.0 75.7 5.2 85.0 60.0 62.0 8.9
P10 86.7 75.3 73.4 6.0 65.0 56.7 56.5 4.9
P11 98.3 93.3 92.0 5.9 93.3 81.7 81.3 9.1
P12 100 96.7 94.9 5.9 68.3 61.7 60.2 4.9
aver. 95.3 88.8 87.2 6.8 83.6 71.5 69.7 8.5
median 99.2 93.3 92.1 6.2 86.7 74.2 70.8 9.0

Fig. 3. Peak classification accuracies during the feedback period with and
without trainer support.

IV. DISCUSSION

In this work, we demonstrated for the first time a suc-
cessful implementation of an adaptive, hybrid BCI system
in a trainer-trainee setup. Like in real life, when people
learn to use or operate a new device or machine, a trainer
was equipped with a BCI system too, to assist the trainee

Fig. 4. Median classification accuracies during the feedback period with
and without trainer support.

with his stable and distinct brain patterns during motor
imagery. Final median accuracy of the trainer-trainee system
were just below 90 % with a peak accuracy of about 95 %.
Trainees, using the system for the first time without a
trainer reached a median accuracy of 71 %, peaks at 83 %.
Although this result was significantly lower than with the
trainer it is still in the range where simple communication
can be performed (see [15]). It is of interest that four of
the trainees achieved medium performance also with the
trainer (P2, P4, P9 and P10), and poor performance without
the trainer (average of the median about 58 %). Interestingly,
one participant (P12) had 100 % accuracy with the trainer but
only 60 % alone.

Exploring the data from a physiological perspective, we
found no notable changes in the patterns of brain activity
during motor imagery for the trainer over all sessions. Fig-
ure 5 shows an average over all ERD maps for the trainer. For
the trainees however we found differences. While the four
trainees described above, seemed to have strong patterns,
but not discriminable ones, it seems that participant P12 had
a very weak pattern, which was not chosen by the trainer-
trainee setup. A more detailed analysis would be necessary
to investigate the direct influence to the classification result.
Additionally, two of the trainees (P2, P10) performed not
better than chance (66.1 %; p=0.01, [12]). We found the
performance after the trainer session to be very high com-
pared to state of the art systems. When comparing our results
with other studies, we found that even compared to systems
that use common spatial patterns and a higher number of
electrodes, our performances are in a similar range ([7]; 80
participants, mean feedback accuracy 74 %).

From a psychological perspective, we subjectively ob-
served participants to be highly motivated and focused on
the task. Generally, we received very good feedback from
the users on this new approach. Our next steps will be to
evaluate the exact impact of trainer guidance on the trainee’s
performance. We are interested whether closed-loop training
with a trainer can reinforce the activity patterns of the trainee
to induce a lasting improvement in class discriminability.
One idea would be to consider other, possibly non-linear
mechanisms to fuse the features of trainer and trainee.
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Fig. 5. ERD maps of the trainer. Average over all sessions (680 trials). Red patches indicate ERD and blue patches indicate event-related
synchronization (ERS).

Another approach would be to investigate whether gradually
reducing the influence of the trainer’s features over time
could help to improve the trainee’s performance.

V. CONCLUSION

Concluding, we can say that this trainer-trainee approach is
very promising. It should be further investigated, whether this
approach is superior to the conventional training approach.
Still the main idea is appealing, starting a training with an
end user in need as long as it is required. This could also be
performed in a telemonitoring setup [10].
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