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Abstract— Spatially-varying signal content can be effectively
modeled using amplitude modulation-frequency modulation
(AM-FM) representations. The AM-FM representation allow
us to extract instantaneous amplitude (IA) and instantaneous
frequency (IF) components that can be used to measure non-
stationary content in biomedical images and videos. This paper
introduces a new method for estimating the IA and the IF based
on a quasi-local method (QLM).

We provide an extensive comparison of AM-FM demodu-
lation approaches based on QLM and a quasi-eigenfunction
approximation method using three different filter-banks: (i)
a separable, equiripple design, (ii) a Gabor filter bank, and
(iii) a directional filter bank approach based on the Contourlet
transform. The results document that the use of the new QLM
method with an equiripple filter bank design gave the best IF
magnitude estimates for a synthetic image.

The new QLM method is then applied to a multi-site
schizophrenia dataset (N=307). The dataset included structure
magnetic resonance images from healthy controls and patients
diagnosed with schizophrenia. The IF magnitude is shown to
be less sensitive to variations across sites as opposed to the
standard use of SMRI images that suffered from significant de-
pendency on the scanner configurations on different collection
sites. Furthermore, the regions of interest identified through
the use of the IF magnitude are in agreement with previous
studies.

I. INTRODUCTION

Biomedical images are often dominated by strong non-
stationary behavior that can be described using Multidimen-
sional Amplitude Modulation-Frequency Modulation (AM-
FM) models [1], [2]. The development of AM-FM models
and applications have been documented in previous research
reported in [3], [4], [5], [6], [7].

In general, the AM-FM representation of an image I(x)
is expressed as:

I(x) =

M∑
n=1

an(x) cos(ϕn(x)) (1)

where x = (x1, x2, . . . ) denotes the pixel coordinates,
M ∈ N indicates the number of components, an > 0
denotes the n-th instantaneous amplitude (IA) function,
and ϕn denotes the n-th instantaneous phase (IP) function.
In eq. (1), the image is decomposed into M components
given by an(x) cos(ϕn(x)), where cos(ϕn(x)) are the FM
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components from which the instantaneous frequency (IF) and
IP are estimated. Here, the IF is defined as the gradient of
the IP: ∇ϕ(x). The use of an AM-FM model for describing
non-stationary content requires the estimation of the IA, IP,
and IF components from each input image.

Estimation of the AM-FM components can be performed
using a quasi-local method (QLM) or an adaptive quasi-
eigenfunction approximation (QEA) method as given in [8].
For both methods, AM-FM components are estimated over
a set of band-pass filters (filter bank). In this paper, we
will investigate the use of different filter bank and AM-FM
component estimation methods configurations.

Overall, the current paper provides the following:
• IF estimation based on QLM that does not impose

frequency magnitude bounds: The current paper ex-
tends the research presented in [8] by not requiring the
use of frequency magnitude bounds for IF estimation.
By removing this restriction, the new approach allows
the use of directional filter banks prior to AM-FM
component estimation.

• Comparisons of multiple AM-FM method configu-
rations: We test 6 possible configurations including the
proposed demodulation method, QEA and three filter-
banks designs. We investigate estimation errors in the
presence of additive Gaussian noise and then identify
the best algorithm.

• AM-FM decomposition of structural magnetic reso-
nance images (SMRI): To the best of our knowledge,
this paper presents the first application of AM-FM mod-
els to represent a SMRI dataset used for investigating
mental illness.

• Application to a Schizophrenia case-control dataset:
We apply the best AM-FM decomposition configuration
to a Schizophrenia study with 307 subjects and validate
reported regions with the literature.

The rest of this paper is organized as follows: in section
II, we present the AM-FM decomposition, the simulation
framework, and the experimental Schizophrenia case-control
dataset; in section III, we present the results of the simulation
and application and discuss them; and in section IV, we
present our conclusions.

II. MATERIALS AND METHODS

In this section we present the new the quasi-local method
(QLM) and the original quasi-eigen approximation (QEA)
[9], used to decompose signals into its AM-FM components.
We also describe the methodology followed to compare
the two demodulation methods in combination with 3 filter
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bank designs: Gabor, equirriple, and directional. Finally, we
describe the dataset in which the best AM-FM configuration
was applied.

A. Generalized quasi-local method

The QLM constrains the decomposition to signals with
frequencies lying on the lower half of the Nyquist limit. Even
though an extension of QLM, proposed in [8], allows to
compute the signal with frequency content on the higher half,
the signal’s frequency content has to be on either half of
the spectrum. This limits the variety of filter-bank designs
that can be used in an AM-FM decomposition framework,
especially affecting directional designs.

We overcome this issue by proposing a new Quasi-local
method that supports signals with an unknown frequency
content. Since this approach is separable, we develop the
one-dimensional algorithm that is then applied to each di-
mension.

The QLM proposes the estimation of ω(x) ∈ [0, π2 ] as in

ω(x) = cos−1

(
R(x) +

√
R2(x) + 8

4

)
(2)

where

R(x) =
2ǧ(1,1)(x)

ǧ(1,0)(x) + ǧ(0,1)(x)
,

and
g(ε1,ε2) = I(x+ ε1)I(x− ε2), ε1, ε2 ≥ 0

On the other hand, the QLM extension proposed in [8]
estimates ω(x) ∈ [π2 , π] as in

ω(x) = π − cos−1 (θ(−R)) , (3)

where, θ(R) denotes the argument of cos−1(·) in eq. (2).
Our extension propose the estimation of ω(x) ∈ [0, π]

exploiting the fact that R ∈ (−∞, 1] ,∀ω ∈ [0, π2 ], and R ∈
[−1,+∞) ,∀ω ∈ [π2 , π].

To extend the method for arbitrary frequencies, we exam-
ine the value of R to determine the IF component estimates.
Since θ(R) is a monotonically increasing function, we have
that R ∈ (−∞,−1] implies that ω ∈ [0, π3 ]. Similarly for
θ(−R) , for R ∈ (1,−∞], we will have that ω ∈ [ 2π3 , π].
Thus, based on R, we estimate each IF component using eq
(2) when R ∈ (−∞,−1] and (3) when R ∈ (1,−∞]. Then,
we still have the remaining case when R ∈ [−1, 1]. In this
case, we generate two estimates by: (i) using a low-pass filter
with a passband of [0, π2 ] and then use eq. (2) to generate
the low-frequency estimate, and (ii) using a high-pass filter
with support on [π2 , π] and then use eq. (3) to generate the
high-frequency estimate. Between the two estimates, we then
select the estimate that gave the larger IA estimate.

B. Simulation framework

We test the proposed QLM based method and QEA with
three filter-bank designs. The first filter-bank is designed
as a separable equirriple with 3 scales, passband ripple
set to 0.017 dB, stopband attenuation set to 30 dB, and
transition bands set to π

10 . The second filter-bank follows

a Gabor transform design set to 3 scales and 8 directions
with increasing spreads for higher frequencies. The last filter-
bank follows a multiresolution directional design [10] with
3 scales and 8 directions. We chose the best configuration
based on the IF estimation error tested on a synthetic image.

We generate the synthetic image using

I(x) = cos
(a

3
x31 +

a

3
x32 + cx1 + cx2

)
, ∀x1, x2 ∈ [−1, 1].

(4)
Here, we have that ϕ(x) = (a3x

3
1 + a

3x
3
2 + cx1 + cx2), and

∇ϕ(x) = ω(x) = (ax21 + c, ax22 + c). We set c = −π8 , and
a = π − c to achieve a maximum IF of π at the borders
of the image. We use Gaussian additive noise to perturbate
the synthetic image and increase the standard deviation to
emulate higher levels of noise. The synthetic image is set to
512×512 pixels. We then conduct an AM-FM decomposition
of the synthetic image using all the mentioned configurations
and measure the IF estimation MSE. We then investigate the
error for 0.01π ≤ |ω| ≤ 0.99π. We also ignore boundary
artifacts by only measuring errors that are at-least 5 pixels
away from the boundary of the image, i.e. we do not consider
the error in the upper, lower, left, and right edges of the
image.

C. AM-FM decomposition of sMRI

Structural magnetic resonance imaging (sMRI) is a popu-
lar brain imaging technique that can be used to measure gray
matter concentration (GMC). The process of obtaining sMRI
images is non-invasive and results in a three-dimensional
picture of the subject’s GMC structure [11].

Several studies make use of large sMRI datasets to provide
evidence of GMC variations generated by neuro-degenerative
diseases such as Schizophrenia, Alzheimer’s disease, Bipolar
disorder, among others. However, the subtle differences
and extensive variety of reported regions suggests that the
detection of such regions still remains a challenge.

Classic approaches for the identification of regions of
interest on GMC rely on the use of statistical parameter
mapping. This technique consists on reporting the statistical
significance of a voxel tested against a disease of interest.
However, this procedure does not exploit spatial properties
of GMC and test each voxel independently. A more recent
approach, [12], proposed the use of a scale invariant feature
transform (SIFT) that extract high-level features to charac-
terize sMRI and report regions of interest. This approach
does take into account spatial properties of sMRI but does
not provide a representation at a voxel level on the image,
possibly missing important brain features. On the other hand,
a complete representation of the spatial characteristics of
sMRI such as an AM-FM decomposition will thoroughly
exploit this intrinsic property of the data.

Specifically, we propose the use of the IF functions to
describe sMRI texture. The brain is formed of peaks and
valleys, called gyri and sulci, which exhibit a wavy pattern
across the brain. The three-dimensional IF captures this
pattern in direction (orthogonal to edges) and magnitude (rate
of intensity variation). Therefore, the IF magnitude will be
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TABLE I: Demographics of MCIC and COBRE studies.

Site Control/Case Male/Female Age±sd

New Mexico 61/53 89/25 36±12.8
Minnesota 19/30 34/15 32.2±10.6
Massachusetts 24/28 32/20 38.7±9.3
Iowa 60/32 59/33 31.3±10

Total 164/143 214/93 34.46±11.4

able to characterize the concavities and provide a quantitative
measure on the geometry of the brain structure.

D. Experimental Dataset

This study combined data from two studies: the Mind
Clinical Imaging Consortium (MCIC), a multi-center col-
laborative study (University of New Mexico - Mind Re-
search Network, Massachusetts General Hospital, Univer-
sity of Minnesota, University of Iowa) of schizophrenia
patients; and the Center for Biomedical Research Excellence
(COBRE), a multidisciplinary study on brain function and
mental illness hosted at the University of New Mexico-Mind
Research Network.

The MCIC patient group comprised subjects that met
DSM-IV-TR criteria for schizophrenia, schizophreniform
disorder, or schizoaffective disorder. The diagnoses were
based on DSM-IV criteria using the Structural Clinical
Interview for DSM Disorders (SCID). Similarly, the COBRE
patient group comprised schizophrenia patients screened
using DSM-IV criteria. The healthy control group included
participants with no history of neurological or psychological
disorder screened by SCID.

The MCIC controls were screened using the SCID, and
subjects were excluded who were diagnosed with substance
abuse/dependence, medical, psychiatric, or neurological ill-
nesses. Healthy controls were not excluded if they had
been medicated with antidepressants, antianxiety, or sleep
deprivation medications, so long as these medications had
not been taken for at least 6 months prior to the scan and
for not more than 2 months of continuous use at any time.

We extracted 307 subjects for the purpose of this study
where 157 were schizophrenia patients and 177 healthy
controls. Demographic information and number of subjects
per site is listed in Table I. Details on sMRI adquisition can
be obtained in [13].

The length of each dimension in our sMRI dataset is 91,
thus we adjust the design of the equirriple filter-bank to 2
scales, maximum amplitude ripple of 0.02 in the pass band,
0.2 maximum amplitude ripple in the rejection band and a
10% frequency spacing for the transitions. This results in
17 coefficients per filter which exhibits a reasonable size
compared to the dimension length of our dataset.

III. RESULTS AND DISCUSSION

The simulation results (see Fig. 1) indicate that the best
configuration for IF estimation, under the presence of ad-
ditive Gaussian noise, is the QLM based method with an

l l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

5 × 10−3

1 × 10−2

1.5 × 10−2

2 × 10−2

0.0 0.1 0.2 0.3
Noise SD

l

l

l

Gabor
Directional
Equirriple

QEA + filter bank

(a)

l

l

l

l l

l

l

l

l

l

l l

l

l

l

l

l

5 × 10−4

1 × 10−3

1.5 × 10−3

2 × 10−3

0.0 0.1 0.2 0.3
Noise SD

l

l

l

Gabor
Directional
Equirriple

QLM + filter bank

(b)

Fig. 1: Normalized error comparisons for different filter-
banks. (a) Filter bank comparison using QEA, and (b) QLM.
The dots denote the mean error after 50 repetitions at the
given noise level. The shaded area in the left plot denotes
the vertical range plotted in the right plot.

Fig. 2: Sagital, coronal and axial view of voxels that
are significantly different (passing FDR correction) among
schizophrenia patients and healthy controls

equirriple filter-bank design. In fact, all three configurations
using QLM exhibited a better performance than QEA based
estimations.

Regarding the filter-bank design, a flat pass-band filter
such as the separable equirripple, provided the most accurate
results compared to a Gabor-like design because it avoids
the necessity of an amplitude correction which induces
numerical instability. Also, the simple implementation of the
separable filter-bank compared to the complex process of the
multi-resolution directional filterbank favored the election of
an equirriple design.

After identifying the best AM-FM decomposition config-
uration, we decomposed the experimental dataset described
in sec. II-D. The estimated IF magnitude of SMRI for each
subject was in the interval [0, 0.17π]. IF captured patterns
with instantaneous wavelength of 1.25 cm and higher. This
is not surprising since a smoothing pre-processing step that
used a full-width half maximum (FWHM) Gaussian kernel
of 1 cm was applied as in [13], so any texture smaller than
1 cm is significantly attenuated.

We then test the robustness of IF to multi-site effects (4
collection sites, see Table I) conducting an analysis of vari-
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ance (ANOVA) test to the healthy control group in the study.
The test indicates that using GMC 170,806 voxels (91.6%
of intracraneal voxels) were significantly different among
sites after multiple comparison correction (FDR< 0.01)
while just 15,539 voxels (8.3%) exhibited such difference
for IF magnitude. The considerable reduction of affected
voxels provides evidence that a texture measure such as
IF magnitude is less affected by intensity variations due to
scanner variability.

Since the effect of the collection site on IF magnitude is
small, we conducted a voxel-wise two sample t-test using
IF magnitude to identify brain regions significantly differ-
ent between schizophrenia patients and healthy controls.
According to the Taliarach coordinate system, the most
significantly different regions overlap the superior temporal
gyrus, parahippocampal gyrus and medial frontal gyrus (see
Fig. 2). None of these regions overlapped the few scattered
voxels affected by collection site or gender.

Several reports on the literature validate this results for
schizophrenia [14] suggesting that the instantaneous wave-
length can provide meaningful result. In our study, the most
significantly different voxel showed schizophrenia patients
with mean instantaneous wavelength of 8.3 cm and 7.1 cm
for healthy controls, implying the formation of slower inten-
sity variations in schizophrenia patients. The IF magnitude
on SMRI measured patterns of sulci and gyri formation on
the two groups of subjects, revealing abnormalities that affect
schizophrenia patients.

A SMRI study focused on the GMC of gyri and sulci in
schizophrenia relatives and controls, [15], suggested cingu-
late and superior temporal sulcal thickness abnormalities than
may be associated with a genetic liability to schizophrenia.
Our study suggests a schizophrenia abnormality on the
superior temporal gyrus which may be affected by superior
temporal sulcal malformation reported in [15] for schizophre-
nia patients.

IV. CONCLUSION

In this paper, we presented a new AM-FM demodulation
method and demonstrated its application to SMRI. The pro-
posed approach showed that the IF magnitude was associated
with previously investigated disease regions that were not af-
fected by different site effects. In fact, the proposed approach
showed significantly less site dependency than the standard
use of GMC. This information can be used to complement

SMRI studies on the effect of neuro-degenerative diseases to
sulci and gyri formations.
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