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Abstract— We propose a novel approach for measuring the
stationarity level of multichannel time-series. This measure is
based on stationarity definition over time-varying spectra and
aims to quantify the relationship between local (single-channel
dynamics) and global (multichannel dynamics) stationarity.
With the purpose of separate among several motor/imagery
tasks, we asssume that movement imagination implies an
increase on the EEG variability, consequently, as discriminant
features, we first compute the non-stationary components of
input signals, and we further obtain its stationary level through-
out the proposed measure. To assess the separability level of
the proposed features, we employ the t-student test. Obtained
results evidence that our measure is able to accurately detect
brain areas projected on the scalp where motor tasks are
performed.

I. INTRODUCTION

Brain Computer Interface (BCI) relates communication
and control system that creates a non-muscular output chan-
nel for the brain [1], [2]. BCI systems are based on the
cognitive neuroscience paradigm termed Motor Imagery (MI)
that consists on the imagination of a motor action without any
actual movement, when patterns of the human sensorimotor
functions are characterized [3].

In this regard, the most common employed method for
monitoring brain activity is the electroencephalogram (EEG)
that is a non-invasive technique with high temporal reso-
lution and low-cost. Nevertheless, brain activity has strong
spatio-temporal dynamics (non-stationarity) reflected in EEG
dipoles measurements and it poses a challenge for accurate
characterization of patterns related with movement tasks.
Thus, the sources (cluster of aligned and synchronously
activated/deactivated neurons) that produce different types
of MI (e.g., right hand versus left hand) can be considered
as spatially distinct [4], yielding non-stationary behavior in
measured time-series.

One of the approaches proposed to cope with this issue
is the piecewise stationary analysis, yet, the problem arises
when measuring stationarity over real stochastic data. To this
end, the weak sense stationarity is the most common defi-
nition that assumes time-invariability of the first and second
statistical moments. Based on the weak sense stationarity,
separation of stationary and non-stationary sources is carried
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out from multichannel recordings in [5], [6], while in [7]
from a single time-series.

Nonetheless, to improve interpretability of the provided
separation, some authors have proposed to include infor-
mation about meaningful neurophysiological EEG spectral
components [8]. Thus, spectro-temporal evolution allows
measuring the stationary degree of a given time-series.
Particularly, several indexes are addressed in [9] to measure
the level of non–stationarity influence of a single channel
signal. However, those proposed indexes, based on marginal
frequency distributions and computed from a given time–
frequency representation, are not bounded, and they rely on
the energy distribution over time of a given signal. Fur-
thermore, to deal with multichannel non–stationary signals
estimated individual channel indexes might not reflect the
actual relationship between local and global stationarity of
signals.

To overcome the aforementioned problems, we propose
as stationarity index the use of a kernel-based entropy of
the marginal frequency distribution. This index measures the
degree of certain stationary process according to the dynamic
variability of multichannel signals. From obtained results on
real EEG data, we show that non-stationary neural activity
can be used to differentiate among several motor-imagery
tasks.

II. METHODS

A. Signal separation filtering task

Let X
s∈RNc ×Nt denote a multichannel stationary time-

series, measured by Nc sensors at Nt time samples, that
is assumed to be corrupted by an observed non-stationary
multichannel signal X

n∈RNc ×Nt , so that the measured ob-
servation of linearly mixing signal is given by X = X

s +Xn .
The problem of separability is, by definition, to determine
conditions on X

s and X
n such that an estimate of the desired

signal X̂
s can be obtained, from filtered X , to a given

degree of accuracy. Consequently, observed time-series X

can be model as a linear superposition of stationary sources
S
s∈RNs ×Nt and non-stationary sources Sn∈RNn ×Nt , where

Ns and Nn denote the number of stationary and non-
stationary sources, respectively, as follows [6]:

X = AS = [As
A
n]

[
S
s

S
n

]
(1)

where A∈RNc ×Nc is an invertible mixing matrix, whereas
A
s∈RNc ×Ns and A

n∈RNc ×Nn are the stationary and non-
stationary subspaces, respectively.

978-1-4244-7929-0/14/$26.00 ©2014 IEEE 1469



Therefore, we aim to factorize an observed time-series into
both the stationary and non-stationary sources by finding the
following inverse mixing matrix:

A
−1 = B = [Bs⊤

B
n⊤]⊤ (2a)

S
s = B

s
X , S

n = B
n
X (2b)

Thus, by splitting the Nt time samples into Ne, that is,
splitting the time–series X into the set

{
X̂i : ∀i∈Ne

}
epochs,

each one with mean µi∈R
Nc ×1 and covariance matrix

Σi∈R
Nc ×Nc , we consider the time series to be stationary in

the weak sense iff the corresponding values of epoch mean
and covariance equal to the average: ui=ū and Σi=Σ̄;,
where ū=EEE{ui : ∀N } and Σ̄=EEE{Σi : ∀N } are the average
epoch mean and covariance matrix, respectively. This can be
achieved by solving the following optimization problem:

min
Bs

tr[Bs
SB

s⊤] s.t. B
s
Σ̄B

s⊤ = INc
, (3)

where INc
is an identity matrix and Ξ is given by:

Ξ = EEE{uiui
⊤ + 2ΣiΣ

−1
Σi } − ūū

⊤ − 2Σ̄, (4)

that can be represented by the following generalized eigen-
value problem:

ΞΦ = λΣ̄Φ. (5)

Solution is given by a set of λ j∈R,φ j∈R
Nc ×1 : ∀ j∈Nc

generalized eigenvalues and Σ̄-orthonormal eigenvectors,
where the stationary projection B

s is given by the Ns eigen-
vectors with smallest eigenvalues, B

s=[φ1, . . . ,φNs
]⊤, and

the non-stationary projection is the remaining eigenvectors.
Further description of this method, called Analytic Stationary
Subspace Analysis (ASSA), is found in [5].

B. Multichannel Non–Stationarity Measure using Kernel
Based Entropy

Let xc∈R
Nt be the c−th channel of the observed time-

series X , ∀c∈Nc , which is transformed to its time-frequency
representation Ωc∈RNF ×Nt , where NF stands for the num-
ber of frequency bins. Thus, we define the kernel-based
marginal frequency entropy as [10], [9]:

hc
Ω

( f ) =
1

1 − γ
log




1
Nt

γ

Nt∑

t=1



Nt∑

t ′=1

Kσ (ωct ( f ),ωct ′ ( f ))







γ−1

(6)

where ωc
t ( f )∈R is the value of Ωc over the f -th frequency

band at time instant t, Kσ (·) is a Gaussian kernel function
with parameter σ over its argument used for the Parzen non–
parametric estimation of the probability density function, and
γ∈R+ is the Rényi entropy degree. To normalize the measure
within variability ranges of all-channels stationarity, each c
channel entropy is normalized as follows:

ĥc
Ω

( f ) = hc
Ω

( f )/
∑

∀c
hc
Ω

( f ). (7)

Therefore, we are measuring uncertainty over each fre-
quency band along the time, thus, the higher the normalized
entropy value, the more non-stationary the frequency band
f of the channel c with respect to the stationary dynamics
of the multichannel signal.

III. Experimental Set-Up

A. Motor movement/imagery (MI) database (Dataset I, BCI
competition IV-2008)

To validate the proposed approach measuring the station-
ary degree of multichannel recordings, we use the well-
known EEG motor imagery database publicly available [11].
Data hold recordings from 7 subjects, who were asked to
perform two different motor/imagery tasks, at a given cue
trigger, selected from three classes: i)left hand, ii) right hand,
and iii) foot (side chosen by the subject). Position of the
59 EEG electrodes covers mostly sensorimotor area. Signals
are band-pass filtered between the rank from 0.05 to 200 Hz,
sampled at 1000 Hz. Preprocessing is carried out by means
of a 10-order low-pass Chebyshev II filtering with 50dB
stop-band ripple and 49 Hz stop-band frequency and down-
sampled at 100 Hz. The database holds 100 runs for each MI
class per subject during 4 s duration.

B. Separation between stationary and non-stationary signals

We use the ASSA algorithm to separate stationary and
non-stationary components from EEG recordings. Thus, for
each EEG trial Xk∈R

59×400, k=1, . . . ,200, from Eq. (1), we
compute the non-stationary signal by setting as an all-zeros
matrix 0∈R59×Ns the columns belonging to the stationary
components in the mixing matrix A, and we use a similar
procedure to estimate the stationary signal. For this purpose,
all ASSA parameters are empirically tuned, namely, we use
40 epochs, while the number of non-stationary sources Nn is
obtained as the elbow of the singular values curve λ decreas-
ingly ranked, while the number of stationary components is
set as the remaining eigenvalues. Therefore, for each trial, we
obtain an estimation of its stationary X

s
k

and non-stationary
X

n
k

components.

C. Entropy-based stationary measure

Once we obtain X
s
k

and X
n
k

, we compute the stationary
measure of each channel, as shown in Eq. (7). To this end,
the Short Time Fourier Transform with 256 frequency bins
resolution is employed using a hamming window lasting 63
samples length. The entropy degree is selected as α = 3,
and the Gaussian kernel parameter is tuned according to
each channel variance. Figure 1 shows the Kernel used
for computing the entropy in a randomly selected trial of
Subject 7 in the C1 channel, and for a randomly selected
frequency band. As expected, the kernel for the stationary
signal (Figure 1(a)) has closer values (smooth image) than
the kernel for the non-stationary signal (Figure 1(b)).

D. Separability between motor-imagery tasks

Meanly, the different dynamics of motor/imagery tasks are
assumed to be highly concentrated within specific frequency
bands [2]. Thus, we calculate the stationarity index in the
following bands: δ(0 − 4) Hz, θ(4 − 8) Hz, α(8 − 15) Hz and
β(15−30) Hz. Besides, it has been shown that non-stationary
data is most informative for detecting state changes of
the time series [12]. Thus, we assume that any movement
response (MI tasks), produced by the activation of sources
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(a) Gassian Kernel for stationary
signal

(b) Gassian Kernel for non-
stationary signal

Fig. 1. Influence of non-stationarities for the Gaussian kernel construction.

in a particular region on the brain, should increase the non-
stationary dynamics (activation of sources), and thus, source
activation leads to higher levels of entropy. Consequently, to
separate among MI classes, we use as discriminant features
the sum of the entropy-based stationary measure in the
channel c of the filtered non-stationary signal Xn

k
, relating to

one of the four estimated EEG frequency bands as follows:

ξc =
∑

∀ f ∈ fb

ĥc
S

( f ), (8)

where ĥc
S

( f ) is the stationary measure computed over the
c−th channel of Xn

k
and fb is one of the four aforementioned

frequency ranks. Additionally, to compare the proposed
characterization, we use the energy content of original time-
series as input feature. Figure 2 shows the energy mapped
to the scalp of an EEG recording randomly selected from
subject 7 of the original signal and its respective estimated
stationary and non-stationary dynamics.

X

X
s

X
n

Fig. 2. Example of a single-trial randomly selected EEG recording and its
energy topological plot.

Figure 3 shows an example of estimated features for the
same subject in Figure 2; as seen, there are different energy
values distributed over the left/right sensorimotor areas that

should be related to hand movement tasks in the α and β
bands.

(a) δ 0-4 Hz (b) θ 4-8 Hz

(c) α 8-16 Hz (d) β 16-32 Hz

Fig. 3. Stationary measure of estimated non-stationary signal X
n for left

hand movement.

Summarizing, we obtain five different feature sets, namely
Ξδ , Ξθ , Ξα , Ξβ and ΞX , each ∈R200×59 (number of trials ×
number of features that, in this case, corresponds with the
number of EEG channels). Lastly, to make clear differences
among activated brain areas performing each motor/imagery
task, we carry out a paired t-student test by using as input
each computed feature matrix, with the null hypothesis
that there are not differences between MI classes. Figure
4 displays statistical results for most discriminative used
features for two different subjects.

IV. Discussion and conclusion remarks

We discussed a novel approach for measuring the sta-
tionary level of multichannel recordings. This approach
that is based on the uncertainty of time-varying spectra
measures the single-channel stationary dynamics accordingly
to the global stationarity of the multichannel recording.
Experiments that are carried out over a BCI database show
that measured variations in the non-stationary dynamics are
useful to distinguish between motor/imagery tasks.

The used ASSA method to obtain estimated stationary
and non-stationary signal components takes advantage of
the weak-sense stationarity definition. Nonetheless, it is
important to remark that parameters tuning in the separation
method may affect the estimation results, which are not
considered in the present work. In this sense, it would also be
useful to include other moments as the kurtosis or skewness
for which non-Gaussian assumptions are to be imposed.
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(a) Subject 6: Left Hand and Foot.

(b) Subject 7: Left Hand and Right Hand.

Fig. 4. Results of the t-test for α and β frequency bands (left and right
columns respectively) for two different subjects.

Regarding the proposed measure, we initially use the
spectrogram to compute the time-varying spectrum for the
sake of simplicity. Nevertheless, there are not restrictions
about the kind of the involved TFR. In fact, used spectral
representation can be modified according to the considered
EEG properties. Lastly, as information measure, we use the
Renyi’s entropy [8]. Figures 1(a) and 1(b) show the used
Gaussian kernels to compute the stationarity measure. In
these Figures, it is readily noted that non-stationary record-
ing presents less uniform behavior because of the sudden
changes in the distances among frequency bands.

Figure 3 shows an example of the estimated features
based on the stationary measure over the non-stationary
estimation X

n
k

, for a left-hand movement task of subject 7.
Activation in the frontal lobe (the electrodes fixed around
the eyes) can be explained as an ocular artifact, that can
be evidenced by the observed higher values in the θ and α
bands. Additionally, response to the trigger cue can be seen
in the scalp visual area. Furthermore, in α and β bands,
highly concentrated activity is shown in the sensory motor
area (centrally positioned electrodes); this activity should
be related to the movement task. To compare this results,
Figure 2 shows the signal energy mapped to the scalp. We
see that there is no relationship between activated zones
and motor-imagery tasks. Nevertheless, it can be seen that
most information is found in the non-stationary estimation
(lower-right plot). Even in that cases when frontal and visual
areas are activated, the sensory motor area gets no response
associated with hand movements. Consequently, we can infer
that the proposed measure of stationarity can distinguish
among different motor-imagery classes.

It is worth noting that to assess the proposed measure
as a possible discriminant feature, we use the t-student test
score to compare differences between active brain areas dur-
ing different motor-imagery tasks. According to the results
shown in Figure 3, we use α and β bands as discriminant
features. Figure 4 shows obtained results. As seen, main
differences are found around the leg sensory motor for the
Subject 6 for whom we consider the left-hand and foot tasks.
In contrast, prominent differences are focused around the
hand movement motor area for the Subject 7, when left
and right hand movements are considered. Those results
display the measure ability for distinguishing among motor-
imagery tasks being related to sudden changes of EEG
recordings. In any case, we are providing a novel approach
for measuring stationarity of multichannel time-series instead
of a characterization approach.

As future work, Authors plan to use the obtained measure
for training a BCI classification system, and to take the
measure of stationarity into an on-line framework.
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