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Abstract— Ptosis of the eyelids is a common condition with a
myriad of causes. Its management depends on the underlying
cause, which can be challenging to diagnose in some cases.
Current diagnosis methods include serum antibodies, tensilon
test, and electromyography (EMG). Each has its own set of
limitations such as invasiveness and lack of sensitivity. To
overcome these limitations, we have developed a Portable Real-
time Infrared Lids, Iris and Blink (PRILIB) monitoring system,
with a long-term goal to improve clinical diagnosis of ptosis. In
this paper, we present the algorithms to detect and analyze eye
parameters and report experimental results. From experiments
conducted on normal volunteers and myasthenic patients, we
found 1. Partial blinks happen when Ocular Myasthenia Gravis
(OMG) patients are tired or engaged in an activity; 2. Blink
rate is significantly higher for OMG patients due to failure
to blink fully; 3. There are noticeably more fluctuations of
palpebral aperture of OMG patients due to rising and falling
of the eyelid height. These experimental findings suggest new
diagnostic features for OMG patients and have implications for
disease management.

I. INTRODUCTION

Ptosis, otherwise known as drooping of the eyelids, has
many congenital and acquired causes, including myasthenia
gravis, aponeurotic ptosis and nerve palsies[2][3][4]. Deter-
mining the cause of ptosis is essential for optimal individ-
ualization of patient management. However, it is sometimes
difficult to elicit the cause of the ptosis even with thor-
ough history, examination and work-up. In particular, ptosis
caused by ocular myasthenia gravis (OMG) may sometimes
be difficult to diagnose when it is the only ophthalmic
manifestation[5][6]. The hallmark of myasthenia gravis is
fluctuating or fatigable weakness, but clinicians know that the
symptoms can sometimes be much more subtle and diagnosis
problematic.

Currently ophthalmologists and neurologists depend on
several investigations to make the diagnosis. They are serum
antibodies, tensilon test, and electromyography (EMG).
However none are 100 percent accurate in determining the
disease and they each have their limitations[5][6][7]. Serum
antibodies consist of anti cholinesterase antibodies (Anti-
AchR) and anti-skeletal muscle antibodies (Anti-MuSK).
Despite Anti-AchR having 70-90 percent sensitivity, nega-
tive AChR does not exclude disease and approximately 50
percent of OMG patients are negative for this antibody. Anti-
MuSK is detectable in approximately 40 percent of anti-
AChR-negative patients, but is usually negative in patients
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with isolated OMG. The tensilon test using edrophonium
has a 80 percent sensitivity, but it is accompanied with po-
tentially life-threatening risks of hypo-tension, bradycardia,
arrhythmia, bronchospasm and other cholinergic side effects.
EMG consists of repetitive nerve stimulation (RNS) which
looks for decremental amplitude with repetitive stimulation
(50-90 percent sensitivity) and single fibre EMG which looks
for variability between individual muscle fibres within a
motor unit (80-95 percent sensitivity). However these tests
are invasive and require insertions of electrodes into the
extraocular muscles or eyelid muscles. The invasive nature of
this test sometimes poses as a deterrent in going for further
investigation in our population of patients. In addition, single
fibre EMG abnormalities can also be seen in other primary
neuropathic and myopathic disorders as a result of abnormal
conduction of the impulse in degenerating or reinnervating
nerve terminals and newly formed endplates and hence may
confuse the results.

In view of the limitations of the tests mentioned above, and
the importance of correct diagnosis of the underlying cause
of ptosis in patients, we propose to build a new diagnostic
tool based on wearable cameras mounted on a glass. As
shown in Figure 1, recorded video data is streamed to a
laptop for disease diagnosis in pilot study. So far we have
built a prototype to assess the lids, pupils, and blinks of
subjects in real-time fashion (the recorder hardware is a quick
revision of the pupil project [1] and the software is developed
by us). To the best of our knowledge, there have been no
previous studies looking into the blink pattern and palpebral
aperture opening pattern of patients with myasthenic ptosis
and normal controls.

II. LITERATURE OVERVIEW

There are many computational algorithms reported in the
literature that detect eye parameters. For example, cascade-
based feature tracking e.g. Viola and Jones [8] and shape
detection e.g. Hough Transform [9] and its variants [10]
- [12]. The current challenge is that most of the available
algorithms are slow, complex and not robust to changes in
illumination conditions.

A. Pupil Detection and Monitoring

Detection of the pupil using cascade-based feature tracking
is reasonably fast but it is not as precise as the method
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System Summary. From the left, the user input is taken by the wearable camera and is then linked to a laptop where the image

retrieval and different types of processing are each process on an independent thread in parallel. The raw data is then being processed by
Wavelet Transform or Hilbert Huang Transform to mine the features that can easily differentiate OMG and normal controls

used in this paper. It also takes a long time - weeks for
training using Viola and Jones [8] and at least a day for
the more efficient method proposed in [13] - and both do
not support multi threading during implementation. Another
cascade-based method of detection is using Local Binary
Patterns, which takes one to three days to train, depending on
the number of samples used [16]. In addition, these previous
studies using cascade-based methods did not factor in the
time and efforts needed for collection of samples. There is
also a chance of failure in creating a good cascade if the
samples collected are not good. Furthermore, if more than
one cascade is used in real time, the performance in real
time is affected. Performance could drop from 30 frames
per second (fps) to 20 fps or lesser.

The computational complexity of the pupil detector used in
this paper is far less compared to using Hough Transform [9]
and its variants [10] - [12]. The number of model parameters
for Hough Transform increases due to the elliptical nature
of the pupil and the complexity of the search time increases
exponentially per increase in parameter [14]. The complexity
increases at a rate of O (Am’2) per additional parameter,
where A is the image space’s size and m is the number of
parameters. A more efficient variant, Iterative Randomized
Hough Transform (IRHT), has been proposed in [15] but
it is still not fast enough for real-time application. As a
comparison, the method used in this paper has a complexity
of O(N) whereas Hough Transform and its variants have
complexities close to O(N?). Furthermore all variants of

Hough Transform require edge detectors e.g. Canny before
implementation hence their performance is highly dependent
on the quality of the edge detector.

B. Palpebral Aperture Monitoring

There are a few works currently available in detecting
the eyelid height or palpebral aperture. Two notable ones
are for fatigue detection in drivers [17] and another using
webcam [18]. The method in [17] detects the eyelid’s height
by getting an initial template from a rough location of the
eyes by filtering and the template is retaken when there are
notable changes of the eye. The templates found earlier were
then used to find the eye region and the palpebral aperture.
This method is adaptive but it requires relocating the eye
and reinitializing the template every time there are notable
changes in the aperture. Changes happen a lot of times
due to blinks, eye movements and changing illumination
condition, thus this method will prove to be too slow and not
robust for real time application. The method mentioned in
[18] goes through a lot of computationally expensive stages
to accurately and precisely get the location of the eyelids.
Hence, this will be too slow for real-time eyelid detection.

There are other similar works that detect the eyelids
for performance improvement of iris recognition [19], [20].
These works aim for more accuracy and precision than speed
so they cannot work well in real time applications. There
are works that detect the eyelids for general purposes like in
[21] and [22] but both of them are also not tailored enough
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Fig. 3. OMG Vs Normal palpebral aperture. The blue horizontal lines indicates the region where there’s a defined minimum threshold of
pixels counted horizontally. The red lines marks out the palpebral aperture.

for the experiments in this paper. The work in [22] uses
edge detection but it gives unnecessary and unspecific edges,
which introduces noise.

Precious information of blinking, eye movements and
aperture would be lost due to the fast speed of these activities
if these algorithms were used and thus a new method is
needed to detect them.

III. THE PROPOSED METHOD
A. System Summary

The PRILIB system’s hardware is purchasable at
http://pupil-labs.com/pupil/. In the prototype, we have
adopted the hardware and developed algorithms for the
targeting applications. Three algorithms to detect blink rate,
palpebral aperture, and pupil dilation are running each on
different threads, in parallel at 30 fps or the camera’s frame
rate. The frames captured from the camera are put in a
circular buffer in a different thread from all the image
processing algorithms so that the image retrieval and its
processing can be done in parallel. The algorithms have
been tailored to ensure that the prototype works reliably in
different illumination conditions, such as in a clinic, at home,
and in a classroom. The summary of the system is seen in
Figure 2 on the previous page.

B. Blink Detection

The blink detector proposed in this paper uses three
algorithms to detect a blink, making it sensitive yet specific.
How the detector works is described below.

1. A blink is detected by first detecting the pupil by a
cascade-based tracker trained using local binary patterns
[16]. The absence of the iris changes a ’boolean variable”
e.g. "BlinkTest]1” to “true” indicating a blink has possibly
occurred.

2. The image is then color-thresholded to show only the
pupil. The height of the pupil is then determined by count-
ing the Highest Vertical Connected Pixel (HVC). When
the height becomes zero, it changes a “boolean variable”
e.g. "BlinkTest2” to “true” indicating a blink has possibly
occurred.

3. When the palpebral aperture height reaches a certain
threshold, a “boolean variable” e.g. ”BlinkTest3” changes to
“true” indicating a blink has possibly occurred.

4. When ”BlinkTest3” and ”BlinkTest2” and ”BlinkTest1”
are all true, a blink is detected.

C. Palpebral Aperture Height detection

The method of eyelid detection in this paper uses a
horizontal edge detection by means of contrasting colours.
Since eyelids are horizontal, using horizontal edge detection
instead of full edge detection ensures only necessary edges
are filtered, hence filtering can be done twice as fast. Pupil
tracking supplements the eyelid detection by limiting the
search to the area around the pupil. The equations for finding
the horizontal edges for an image with dimension 6402480
can be seen below.

Note: j=0toj=474 and i = 0 to i = 640 where i+1 each
time j has iterated through a column from top to bottom.

R = Rij+ Rijy1+ Rijyo (D
R"=R; i3+ Rijta+ Rijis 2
Rc =|R — R"| 3)

G and B can be substituted for R in equations (1) to (3).

5

D (X, Yiem)| 4

m=3

2
(Rc,Ge,Be)iy = \Z (X, Yjn) —
k=0

Cij=Ri; +Gi;+ B )

In equation (3), R¢ refers to the contrast between R’ (refer
to (1)), the sum of the first three pixels, and R” (refer to
(2)), the sum of the next three pixels. C; ; is then compared
to a defined threshold to determine if the point should be
accepted as an edge. If it is within threshold, it is accepted,
and a white pixel is placed in location (X; ;,Y; ;) in a blank
image container. The threshold is auto- callbrated by a white
pixel limit of 4000 pixels, for example, that can represent
edges. Auto-calibration of the threshold ensures that there
are enough edges to represent the eyelids in different lighting
conditions. The palpebral aperture is then obtained by finding
the prominent horizontal features as shown in Figure 3.
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Fig. 4. Pupil and detection and dilation monitoring in action from

myasthenic patients to normal controls. The varying orientations
are due to the pupil looking in different directions.

D. Pupil Detection

Pupil detection is achieved by executing color thresholding
twice in parallel using threading. The color thresholding is
auto calibrated using pixel limiting like in the horizontal edge
detector described in the previous section. First pixel limiter
is used to calibrate the color thresholding so that only the
pupil will be detected making it specific while the second is
calibrated so that it is sensitive. This is shown in the Figure
4 above where the specific thresholding is pinkish while the
sensitive thresholding is red.

The pupil dilation is derived by measuring the highest
vertically connected. The algorithm used in monitoring the
pupil is hence low computation due to O(N) complexity,
high precision due to sensitive thresholding and accurate due
to specific thresholding.

IV. EXPERIMENTS

A pilot test was conducted with 4 OMG patients and 10
normal controls.

A. Experiment Procedure

1) The volunteer wears the PRILIB device and is given
a remote controller to press whenever they experience
eye fatigue.

2) The volunteer is told to read a newspaper for 20
minutes, followed by a 5 minute break.

3) The volunteer then watches a 90 minute long movie.
In this part of the experiment, all lights are turned off
to minimise extraneous variables e.g. lighting affecting
the volunteer’s pupil dilation, eyelid activity and blink
rate.

B. Observation

From the experiments, we came up with three observations.
They are:

1) OMG vs Normal Blink Rate: OMG patients blink more
than normal controls likely due to the poorer quality of
their blinks secondary to weaker and more easily fatigable
muscles. This could explain the earlier onset of eye fatigue.
A possible exception to the above would be OMG patients
with smaller eyes as the eyelid movement required for a full
blink would be less as seen in asterisk in Table I. From Table

TABLE I
BLINK RATES OF NORMALS AND OMG PATIENTS

Condition Average Blink Rate Per Minute

Normal 9 12 15 13 19 9 14 23 19 12
OMG 33 22 12*% 13* - - - - - -

I above, calculated average blink rate of the normal controls
is 15 while the OMG patients is 20.

2) OMG vs Normal Palpebral Aperture Fluctuations:
The OMG patients in our study showed significantly more
palpebral aperture fluctuations due to more frequent rise and
fall of their eyelids, which are seen as spikes in Figure 5. A
likely explanation for this would be the fatigable nature of the
orbicularis muscle fibres, the need to overcome physiological
drooping of the lids to avoid obstruction of their visual axis,
as well as the increased blink rate, see Table I. The higher
number of spikes, in contrast, is not seen in normal patients,
although there is a possibility the spikes may increase with
longer periods of activity and decreasing attention spans.

3) OMG vs Normal Blink Percentage: OMG patients were
also noted to execute half blinks or lesser when they were
focused on their task. This is in comparison to normal
controls who blink fully throughout the task. See Figure 6.

V. CONCLUSIONS

In conclusion, we have found from our pilot study that the
blink pattern and rate of OMG patients differ significantly
from normal subjects: OMG patients have higher blink rate,
more significant palpebral aperture fluctuations and exhibit
half-blinks or less that are not seen in normal subjects.
These observations form the basis for future comparisons
for patients with other ptosis mechanisms and hold impor-
tant clinical implications for ptosis as well as other eyelid
movement disorders.

VI. ONGOING WORK

Currently we are increasing the number of OMG patients
from different demographic groups and also including the
other kinds of ptosis in the experiments to monitor a trend
unique to each condition.
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