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Abstract—Induced pluripotent stem cell (iPSC) lines derived 

from skin fibroblasts of patients suffering from cardiac disorders 

were differentiated to cardiomyocytes and used to generate a data set 

of Ca2+ transients of 136 recordings. The objective was to separate 

normal signals for later medical research from abnormal signals. We 

constructed a signal analysis procedure to detect peaks representing 

calcium cycling in signals and another procedure to classify them 

into either normal or abnormal peaks. Using machine learning 

methods we classified signals into normal or abnormal signals on the 

basis of peak findings in them. We compared classification results 

obtained to those made visually by an expert biotechnologist who 

assessed the signals independent of the computer method. 

Classification accuracies of around 85% indicated high congruence 

between two modes denoting the high capability and usefulness of 

computer based processing for the present data. 

Keywords—Calcium cycling, cardiomyocytes, signal analysis, 

classification 

I. INTRODUCTION 

Calcium cycling (Ca
2+

) is vital for cardiac functionality. 
Variability of this biochemical cycling occurs in cardiac 
disorders and dysfunction. Consequently, cardiac functionality 
and disorders could be studied more thoroughly with the 
investigations of Ca

2+
 data analysis. 

Spontaneously beating cardiomyocytes were differentiated 
from induced pluripotent stem cells originated from patients 
suffering from cardiac disorders. Cardiac signaling anomalies 
appear in the shape and frequency of time series data. It is 
imperative to investigate such forms to gain more information 
about cardiac functionality and disorders and to study the 
influence of medication on these cells. To our knowledge, such 
investigations have only been made  subjectively and visually. 

In the present research, we developed computational 
methods for the evaluation and prediction of Ca

2+
 signaling 

data in order to create efficient tools for medical and 
biotechnological researchers. Our approach is on the basis of  
signal analysis and data mining methods. The former was 
applied to detect peaks or cycles in a signal data set the results 
of which were run with those of latter to classify peaks or 

entire signals into two classes, either normal or abnormal. 

II. CELL LINE DATA AND ITS PREPROCESSING 

A. Generation of cell data 

Induced pluripotent stem cell (iPSC) lines from skin 

fibroblasts of patients suffering different cardiac disorders 

were established with retroviruses encoding for OCT4, SOX2, 

KLF4 and MYC [1]. Differentiation into cardiomyocytes was 

carried out by co-culturing iPSCs with murine visceral 

endoderm-like cells as described earlier [2]. The beating areas 

of the cell colonies were mechanically and enzymatically 

dissociated for further analysis [2].  

Ca
2+

 imaging was conducted in spontaneously beating, 

Fura-2 AM (Invitrogen, Molecular Probes) loaded dissociated 

cardiomyocytes perfused with extracellular solution as 

described earlier [3]. Ca
2+ 

measurements were done on an 

inverted IX70 microscope (Olympus Corporation, Hamburg, 

Germany) and cardiomyocytes were visualized with a 

UApo/340 x20 air objective (Olympus). Images were recorded 

with an ANDOR iXon 885 CCD camera (Andor Technology, 

Belfast, Northern Ireland) synchronized with a Polychrome V 

light source by a real time DSP control unit and TILLvisION 

or Live Acquisition software (TILL Photonics, Munich, 

Germany). Fura-2 was excited at 340 nm and 380 nm light and 

the emission was recorded at 505 nm. For Ca
2+

 analysis, 

regions of interests were selected for spontaneously beating 

cells and signals were acquired as the ratio of the emissions at 

340/380nm wavelengths. 
 

B. Preprocessing of data 

The present data set included short signals of no more than 
a few hundred samples since toxic UV and Fura-2 exposure on 
cell lines did not permit longer measurements. Signals 
consisted of different sampling frequencies: 8.3, 10.4, 11.4 or 
22.3 Hz. Their durations also varied from around 11 to 24 s. 
Subject to the highest sampling frequency, signals were 
lowpass filtered with a standard median filter of window length 
5 to suppress random impulse-type noise [4]. 

The research was sponsored by the Council of Tampere region under the 
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At first, a rough amplitude estimate of large peaks in a 
signal was calculated by means of the amplitude distribution of 
samples. Before this task a linear trend was removed from a 
signal since frequently there was a linearly decreasing trend in 
the present data. In addition, the minimum of a signal was 
computed and subtracted from all values to obtain the zero 
minimum. Note that these operations were only used for the 
peak detection. After the detection, all further computation was 
made for the original (filtered) data. Note also that the samples 
had no unit since they were ratios of two measurement values 
as mentioned in Section II.A. 

Next, all samples (amplitude values of the data) were 
counted to form a histogram mapping to represent their 
distribution. From their maximum index, i.e., the last histogram 
bar down to the location of 80% in the histogram bars was 
determined from which the mean of all amplitude values up to 
maximum index was calculated to estimate a rough lower 
bound of (large) peak maxima in a signal. This estimate A gave 
us preliminary information from the average quantity of large 
peaks in a signal such as in Fig. 1. It was used mainly to 
regulate some threshold values as described below. 
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Fig. 1. A signal of 19.2 s after removing linear trend with four abnormal 

peaks. A is a rough estimate for large peak amplitudes in the signal. Because 

of the abnormal peaks (with the purple and red marks) the signal was assessed 

to be abnormal. 

Next, the first derivative signal was differentiated 
(approximated) from a preprocessed signal by computing linear 
regression through successive samples with the window length 
of w equal to 3 or 7 depending on the above sampling 
frequencies. Slope values of linear regression were used to 
approximate the first derivative of the original signal. 

III. DETECTION OF SIGNAL PEAKS 

The peak detection consists of the determination of 
locations of the beginning, maximum (top) and end of each 
peak. Note that all peaks are positive, i.e., their tops are always 
local maxima. On the other hand, beginnings and ends are local 
minima. See Fig. 1. 

A. Detection of peak candidates 

The distribution of signal samples after the preceding 
preprocessing was approximately from interval [60,300]. Each 
signal was searched for linearly from the signal beginning to its 
end as follows. To detect a peak beginning by means of the 
first derivative values, a segment was searched for in which 
there were derivative values less than threshold t1 equal to 30 
and after these values there were more than one value greater 
than or equal to t1. To find the maximum of the current peak, 
there had to occur at least one derivative value again less than 
t1. When right sides of peaks were often less steep than left 
sides, a smaller threshold of 0.6 t1 was applied to search for 
peak ends. These threshold values were found experimentally 
on the basis of our datasets. 

After detecting the segment of a peak beginning, the exact 
location of the beginning was determined to be the least signal 
sample of the signal segment just before the derivative value 
changing above t1. For the peak end, the exact location was 
conversely just after a first derivative value dropped below the 
threshold. To exactly find the maximum at the top of the peak, 
the maximum sample was searched for from the signal segment 
found above for the first derivative maximum. Note that the 
exact extremum locations were searched for from the signal 
samples, but the segments to give their approximate locations 
were first determined with the derivative values. 

B. Discarding erroneous peak candidates 

 
Not all waveforms are acceptable and interesting peaks 

related to the cardiomyocyte data source with which they are 
associated in a signal. All waveforms are initially considered as 
peak candidates, and peaks are discarded based on the 
following criteria. A peak amplitude (Fig. 2) was calculated 
from the peak maximum to either beginning or end choosing 
the higher side (greater value). Sometimes these sides differed 
considerably from each other. 

 If the first or last peak candidate of a signal was only 
partial, in other words, the first included no beginning 
(minimum), but merely the maximum and end, or the 
last peak candidate contained merely the beginning and 
maximum, such partial peak candidates were discarded.  

 If the amplitude of a peak candidate was exceptionally 
small, such a candidate was deemed to be of noise or 
other irrelevant waveform and was excluded. Threshold 
t2 of 10% (modified from [3]) related to the amplitude 
estimate A was experimentally found to be appropriate 
for most signals. 

 Sometimes there were exceptional peak candidates 
being within either the left or right side of a larger peak. 
In such a situation, this additional, smaller peak 
consisted of much higher left side than its right side 
followed by the maximum of the larger peak containing 
the small peak in its own left side. The smaller peak and 
larger one had the same beginning. In the other 
situation, when the smaller peak and the larger had the 
same end, the right side of a larger peak contained the 
smaller peak which had a tiny left side but a larger right 
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side. If the smaller side of such an “inner” peak 
candidate was less than threshold t3 equal to 20% from 
the higher side, this small inner peak candidate was 
discarded (left as such inside the larger peak). 

 

Fig. 2. A fictional peak on the left and its first derivative curve on the right 

show six variables computed: amplitudes A1 and  A2, durations D1 and  D2 and 

maximum derivative values m1 and  m2 of the left and right side. 

C. Computation of peak variables 

In the beginning, six peak variables were computed from 
those called accepted peaks that remained after the rejection of 
erroneous peak candidates. The variables are shown in Fig. 2. 
They are the amplitudes of the left and right sides of a peak, the 
durations of both sides, and their maxima of the first derivative 
values. Since there existed more or less curvature in peaks, we 
used these maxima to evaluate the curvature property. Later, 
we added the seventh variable that was the interval (in time) of 
a peak calculated from the maximum of the preceding peak to 
the maximum of the current peak or from the beginning of the 
signal in the situation of the first peak when there had not been 
a rejected partial (large) peak before it. This was reasonable 
because it shows whether the peaks of a signal appear regularly 
or irregularly subject to time. The purpose of the use of peak 
variables was to classify individual peaks and entire signals. 

IV. CLASSIFICATION OF ACCEPTED PEAKS 

 
Ultimately, we classified the signal peaks that were 

composed of two subsets including somewhat different types 
of signals as to their sampling frequencies, number of samples 
and number of peaks. All signals had been assessed visually by 
an expert familiar with the data and who had conducted the 
measurements. She had given the label of either normal or 
abnormal for every entire signal. In addition, the below 
algorithm was programmed to automatically screen all 
accepted peaks and to classify individual peaks to be either 
normal or abnormal. All the data were considered in two ways: 
processing with the below peak classification and as visually 
labeled signals. The expert did not take part in the development 
of the algorithm and had performed her visual labeling earlier. 
Thus, these two actions were independent of each other. 

The peak classification programmed in Matlab was run for 
all accepted peaks of all signals given seven peak variables as 
follows. 

 If the larger side of a peak was greater than t3 equal to 70% 
(modified from [3]) from that of the preceding peak 
provided that the preceding one was either normal or 
greater than t4 equal to 50% of estimate A, the current peak 
was classified as normal. If the condition was not satisfied, 
the current peak was classified to be abnormal. If the 
current peak was the first in a signal or there was neither 
normal nor large enough predecessor peak, it was 
compared to estimate A applying t4. The second and third 
abnormal peaks in Fig. 1 were found according to this rule. 

 The asymmetry of peak sides was checked. If one of the 
peak sides was clearly less than the other, it was classified 
to be abnormal. The threshold was t5 equal to 88% 
(modified from [3]). The first and fourth abnormal peaks 
in Fig. 1 were identified with the present rule. 

Not all of the peak variables were used in the peak 
classification above. However, they were used later in the 
classification with data mining  methods. A signal classified 
both visually and automatically as normal is seen in Fig. 3.  
There was large variability among signals. For instance, a part 
of them contained a few peaks only. The signal in Fig. 1 
included an average number of accepted peaks, 13. 

V. RESULTS 

 The signals were processed according to Sections III and 
IV to classify the peaks. We tested an earlier subset of 93 
signals sampled at 8.3, 10.4 or 11.4 Hz and a later subset of 43 
signals sampled at 22.3 Hz, and then jointly all the 136 
signals. The approach was chosen since the signal properties 
varied between two subsets and, thus, we were also interested 
in seeing their separate results. The subset of 43 signals 
contained 234 peaks and 93 signals included 1690 peaks. The 
number of peaks in all signals varied from 1 to 43 (mean 14.1, 
median 12 and mode 5 peaks). Before classification all seven 
variables of the data were standardized to have the zero mean 
and unit variance. 

We classified the peaks of signals using leave-one-out 
validation that is appropriate to small data sets. In leave-one-
out, a single signal formed the test set and all others were used 
as a learning set to build a computational model, i.e., the peaks 
of a single signal were used in testing one at a time whereas the 
peaks of the other signals were used in training of the 
classification method. This way, all signals were run. 
Classification accuracy means here the percentage of correct 
decisions into the classes of either abnormal or normal peaks or 
signals. True positive and negative rates were also computed. 

We ran K-nearest neighbor method with odd K equal to 
{1,3,…,21}, linear and quadratic discriminant analysis, naïve 
Bayes rule and classification trees [5,6]. Table I contains the 
best accuracies of the methods in the peak classification. The 
best K varied within subsets (with K=1,3,5,9,11).  
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Fig. 3. The signal of 19.2 s was classified to be normal including no 

abnormal peak. 

Taking into account both true positive and negative rates 
and accuracy, discriminant analysis produced the best results. 
Nevertheless, the smaller subset of the 43 signals was difficult 
for all classification, obviously for the sake of the imbalanced 
class distribution. Signals labelled as abnormal also included 
normal peaks and not only abnormal. This could achieve false 
negative corresponding to normal peaks in abnormal signals. 

Second, we classified the signals after their peak 
classifications (normal or abnormal) with each method. Again, 
the peaks of one signal were used as test cases and those of the 
others as the training set. If even a single peak of a signal was 
classified to be abnormal, the whole signal was interpreted to 
be such. These signal classification results were compared to 
the visually determined signal classes (seen correct). If a 
classification test gave the same result for a signal as was 
determined visually, the classification was correct, otherwise 
incorrect. The classification results are shown in Table II. In 
the signal level classification, the best K was 3 or 5. The best 
accuracies in peak and signal classifications with different sets 
were yielded by discriminant analysis. Again, the smaller 
subset of the 43 signals was difficult. The probable reason was 
its highly imbalanced class distribution and small size. In the 
entire data set, the class sizes were virtually equal. 

VI. DISCUSSION AND CONCLUSION 

We obtained useful results subject to the new way of 
considering calcium cycling anomalies in the present 
cardiomyocyte data and to the development of their automatic 
assessment. Our classification results were good even if our 
small data set was rather heterogeneous in regard with signal 
properties. In addition, automatic classification is difficult for 
these data because of short signals frequently including only 
small numbers of peaks. 

The results reported consisted of preliminary tests only. We 
will develop the method introduced. Computer based methods 
will play an essential role in the future once the medical 
research of this field will emerge as applications in practice. 

TABLE I.  CLASSIFICATION RESULTS OF INDIVIDUAL PEAKS (CLASSES 

OF NORMAL AS POSITIVE AND ABNORMAL PEAKS AS NEGATIVE) WITH K-
NEAREST NEIGHBOR SEARCHING (K-NN), (LINEAR OR) QUADRATIC 

DISCRIMINANT ANALYSIS (DA), NAÏVE BAYES (NB) RULE AND 

CLASSIFICATION TREES 

* Quadratic discriminant analysis not used since a positive-definitive matrix was not obtained. 

 

TABLE II.  CLASSIFICATION RESULTS (CLASSES OF NORMAL AS POSITIVE 

AND ABNORMAL SIGNALS AS NEGATIVE) WITH K-NEAREST NEIGHBOR 

SEARCHING (K-NN), (LINEAR OR) QUADRATIC  DISCRIMINANT ANALYSIS (DA), 
NAÏVE BAYES (NB) RULE AND CLASSIFICATION TREES COMPARED WITH 

VISUAL RATING OF SIGNALS  

 True positive TP and negative TN rates and accuracy A [%] 

signals 67 69 136 29 64 93 38 5 43 

Method TP TN A TP TN A TP TN A 

K-NN 88.1 76.8 82.4 79.3 78.1 78.5 97.4 40.0 90.7 

DA 80.6 91.3 86.0 79.3 90.6 87.1 84.2 60.0 81.4* 

NB 88.1 59.4 73.5 69.0 71.9 71.0 100.0 20.0 90.7 

trees 71.6 91.3 81.6 41.4 89.1 74.2 84.2 60.0 81.4 

* Quadratic discriminant analysis not used since a positive-definitive matrix was not obtained. 
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True positive  TP and negative TN rates and accuracy A [%] 

1924 peaks in 136 

signals 

1690 peaks in 93 

signals 
234 peaks in 43 signals 

peaks 1496 428 1924 1292 398 1690 204 30 234 

Method TP TN A TP TN A TP TN A 

K-NN 97.5 40.7 84.9 97.6 41.2 84.3 99.5 6.7 87.6 

DA 94.8 72.9 89.9 95.0 73.9 90.1 80.9 33.3 74.8* 

NB 92.6 38.6 80.6 90.7 39.4 78.6 99.5 0.0 86.8 

trees 87.0 60.3 81.1 86.3 60.3 80.2 94.1 13.3 83.8 

samples 
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