
  

 

Abstract— Tracheal activity recognition can play an 

important role in continuous health monitoring for wearable 

systems and facilitate the advancement of personalized 

healthcare. Neck-worn systems provide access to a unique set of 

health-related data that other wearable devices simply cannot 

obtain. Activities including breathing, chewing, clearing the 

throat, coughing, swallowing, speech and even heartbeat can be 

recorded from around the neck. In this paper, we explore 

tracheal activity recognition using a combination of promising 

acoustic features from related work and apply simplistic 

classifiers including K-NN and Naive Bayes. For wearable 

systems in which low power consumption is of primary concern, 

we show that with a sub-optimal sampling rate of 16 kHz, we 

have achieved average classification results in the range of 

86.6% to 87.4% using 1-NN, 3-NN, 5-NN and Naive Bayes. All 

classifiers obtained the highest recognition rate in the range of 

97.2% to 99.4% for speech classification. This is promising to 

mitigate privacy concerns associated with wearable systems 

interfering with the user’s conversations. 

I. INTRODUCTION 

Increasing healthcare costs and an aging world 
population have recently motivated a considerable amount of 
research effort on wearable health-monitoring systems 
(WHMS) [1].  It is envisaged that preventive measures with 
personalized diagnostic approaches would be more cost 
effective and sustainable for the healthcare system [2]. 
Wearable sensors facilitate remote patient monitoring and 
have the potential to extend the reach of specialists in urban 
areas to more rural areas [3]. Unlike wearable systems such 
as wristbands, armbands, waist-gears, stomach patches, 
insole-based activity monitors etc., neck-worn devices 
provide access to a unique set of health-relevant data and 
activities that other wearable devices simply cannot access.  

Tracheal activities are among signals that if recognized 
properly can contribute significantly to health monitoring. 
Common tracheal events that can provide insight into an 
individual’s health and well-being include breathing, 
chewing, swallowing, coughing, clearing the throat and 
speech. An acoustic heartbeat signal can also be detected 
when a sensor is placed on the neck [4]. Various sensor types 
have been used in literature for tracheal activity recording 
and analysis including accelerometers [5], [6], 
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electromyography (EMG) sensors [8], flex/piezoelectric 
sensors [9], and acoustic sensors [4], [6], [10], [11].  

A wearable breathing monitoring system was presented 
in [4] to detect breathing cessation that can be caused by 
respiratory diseases, neuromuscular diseases, epilepsy, 
sudden infant death syndrome and sudden adult death 
syndrome. Corbishley and Rodríguez-Villegas obtained the 
largest acoustic breathing signal power, especially at low 
airflow, from a neck-worn device. Using a microphone and 
conical bell for signal recording, their algorithm detected 
breathing periods for five subjects with an accuracy of 
91.3% [4].  

Chewing and swallowing, which are easily recordable 
from neck-worn devices, are also common physiological 
tracheal activities of interest for monitoring ingestion 
behavior. In response to a dramatic increase over the last 
decades of overweight and obese population in the U.S., 
methods of food intake detection using only the time series 
of swallows was investigated in [12] to potentially mitigate 
consequent threats to life expectancy. Researchers achieved 
an accuracy of up to 89.4% and 93.9% for group and 
individual food intake models respectively [12]. Swallowing 
data is also used for diagnosis of a swallowing disorder 
called dysphagia. Dysphagia is most common in individuals 
with neurological impairments such as brain-stem stroke, 
head/neck injuries, and spinal cord injury with anterior 
cervical fusion [7]. Patients suffering from dysphagia are 
likely to choke or aspirate due to the entry of food into the 
airway below the true vocal folds [5]. Sejdic et al. propose 
an approach that achieves an accuracy of >90% for 
classification of swallowing accelerometry recordings 
containing healthy swallows and penetration aspiration in 
dysphagic patients [5]. 

Another tracheal event that can provide insight for health 
monitoring is coughs. Coughing is a normal protective reflex 
which clears the respiratory tract and prevents entrance of 
noxious materials into the respiratory system [11]. Coughing 
is not usually frequent in healthy subjects, but is a common 
symptom of many respiratory diseases, including asthma, 
gastro-esophageal reflux (GOR), postnasal drip, 
bronchiectasis and chronic bronchitis [13], [14]. Matos et al. 
achieved 82% average cough detection rate with a false 
alarm rate of seven events per hour by classifying based on 
events above an energy threshold relative to each recording’s 
average energy [11]. Similar to coughing, clearing the throat 
is also another protective mechanism to remove an irritant in 
the throat [15]. Clearing the throat can be a symptom for dry 
throat, enlarged tonsils, enlarged adenoids and upper 
respiratory tract infection. The accuracy of acoustic 
monitoring for detecting cough and throat clearing was 
investigated in [15]. The authors found that both event 

Tracheal Activity Recognition Based on Acoustic Signals 

Temiloluwa Olubanjo, IEEE Student Member, and Maysam Ghovanloo, IEEE Member 

1436U.S. Government work not protected by U.S. copyright



  

TABLE I.  DATA SUMMARY FOR FIVE SUBJECTS 

Activity 
Day 1 - 

Training 

Day 2 - 

Testing 

Total 

Number 

Chew 65 61 126 

Clearing Throat 51 48 99 

Cough 51 52 103 

Swallow 51 55 106 

Speech 121 95 216 

Total Number of Tracheal Activities 650 

 

profiles in pressure topography revealed similar qualitative 
pattern of pressurization with more vigorous pressure 
changes and a greater rate of repetitive pressurizations in 
coughs.  

Since the human speech is a combination of linguistics 
and emotions, several researchers continue to work on 
automatic emotion recognition using audible paralinguistic 
cues from speech [16], [17]. A speaker’s emotional state 
expresses itself in speech through paralinguistic features 
such as pitch, speaking rate, voice quality and laugher [17]. 
In [16] and [17], automatic emotion recognition was 
explored using Gaussian mixture models and artificial 
neutral networks, respectively.  

The aforementioned research endeavors work to detect 
and utilize specific tracheal events in order to draw certain 
inferences and/or conclusions for health monitoring 
purposes. Little research effort has been committed to 
recording and discriminating common tracheal activities 
from one another to facilitate the potential benefit of a neck-
worn WHMS. This paper focuses on detecting and 
classifying five common and easily replicable tracheal 
activities namely chewing, clearing the throat, coughing, 
swallowing and speech from acoustic recordings of a neck-
worn WHMS. Since power consumption is of primary 
concern in wearable systems, we explore the potential of a 
sub-optimal sampling frequency for tracheal activity 
recognition. More specifically, we assess whether a sampling 
rate of 16 kHz is sufficient to preserve enough characteristics 
of the tracheal activities of interest to facilitate classification. 
In section II, we present the data collection method, 
experimental procedure, feature extraction and classifiers 
used. Data analysis is presented in section III, results and 
discussion in section IV, and the conclusion along with 
future works in section V. 

II. METHODOLOGY 

A.  Data Collection 

Experimental data for five healthy subjects (2 males and 
3 females, ages 20 - 35 years old) was adopted from a 
previous study where a sampling rate of 16 kHz was used 
[6]. The data was recorded with IASUS NT3 throat 
microphone [18] placed over the suprasternal notch while 
subjects were in a sitting position. From the tracheal 
activities of interest, swallowing has a bandwidth up to 1.5 
kHz, speech, up to 4 kHz [10], and chewing, up to ~ 6 kHz 
depending on the substance being chewed. On the other 
hand, coughing and clearing the throat can reach frequencies 
up to ~ 15 kHz [19]. Therefore, according to the Nyquist 
theorem, 16 kHz is sufficient to preserve important 
characteristics of chewing, swallowing and speech but 
possibly not all of the characteristics of coughing and 
clearing the throat [6], [10].  

B.  Experimental Procedure 

To account for physiological variations, experimental 
data was collected from subjects on two different days. Data 
from day 1 was used for training while data from day 2 was 
used for testing. Table I shows a summary of the dataset used 

in this experiment. The ‘chewing’ activity consisted of each 
subject chewing two crackers while the ‘swallow’ activity 
consisted of each subject swallowing some water and a few 
dry swallows when they were audible and visibly 
recognizable during activity labeling. The speech activity 
consisted of each subject reading the same text. 

C.  Feature Extraction 

Tracheal activities were isolated and annotated from the 
continuous recording by listening to audio stream, visually 
inspecting the signal, and validating the event label with the 
experimental procedure. Acoustic features were extracted 
from each isolated activity using a window size of 1000 
samples (62.5 msecs) with 50% overlap. In an effort to 
achieve good clustering of features from each activity, we 
compiled promising features that have been used to obtain 
acceptable performance from related works [5], [6], [10], 
[11], [22]. A total of 47 features from the time, frequency, 
and cepstral domains were used for training and testing of 
each classifier. Features from each window frame per 
tracheal event were then averaged to obtain one real number 
to represent each activity. 

Time domain features: 

 Windowed Energy (W.E.): Frame-level feature that 
provides short-term characteristics of the windowed frame 
[20]. W.E. has been shown to be a relevant feature for 
real-time swallowing detection in [6]. 

 Total Variation (TV): Essentially the Manhattan or L1 
norm of derivatives. TV was initially introduced in [21] 
for image denoising and reconstruction.  

 Zero Crossing Rate (ZCR): A measure of the noisiness of 
the signal. ZCR is commonly used to differentiate voiced 
and unvoiced speech signals [19], but has also been used 
for activity recognition in [10]. 

Frequency domain features: 

 Power Spectral Density (PSD): Total spectrum power and 
sub-band power were used as features in [10]. Similar to 
sub-band power, PSD describes how the power of a signal 
is distributed over different frequencies. 

 Spectral Centroid: The centroid is a measure of the 
spectral shape. High values of the centroid correspond to 
‘brighter’ acoustic structures with more energy in the high 
frequencies [20].  
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Figure 1.  F1 scores for 1NN, 3NN, 5NN and Naive Bayes Classifiers 

TABLE II.  5-NN CONFUSION MATRIX FOR SUBJECT 2 
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Chew 12 0 0 1 0 0.92 

Clearing 
Throat 

0 9 0 0 0 1 

Cough 0 2 9 0 0 0.81 

Swallow 2 0 0 8 0 0.8 

Speech 0 0 0 0 33 1 

Precision (%) 0.85 0.81 1 0.88 1  

 

 Spectral Roll off: A measure of the skewness of the 
spectral shape [19]. It is commonly used in speech 
recognition and audio classification and has also been used 
for activity recognition in [10]. 

Time-Frequency domain features: 

 Discrete Wavelet Transform (DWT): DWT has been used 
for emotion recognition from speech [16] and swallowing 
detection [5], [6]. Delta coefficients of the Coiflet 4 
wavelet at decomposition level 3 were shown to be reliable 
for swallowing detection in [6] and [22].  

Cepstral domain features: 

 Mel Frequency Cepstral Coefficients (MFCC): An 
important parametric representation commonly used in 
speech recognition. MFCC has also been used for non-
speech recognition such as cough detection [11]. In this 
study, all 39 coefficients were extracted and used. 

D. Classifiers 

K-Nearest Neighbor (K-NN) and Naive Bayes classifiers 

were used in this study. All classifiers were implemented in 

MATLAB using the Statistical Pattern Recognition Toolbox 

[24]. Euclidean distance was used to determine the nearest 

neighbors for K-NN while normal distribution was used for 

the Naive Bayes classifier. The chosen value of K governs 

the degree of smoothing; hence, there is an optimum choice 

for K that is neither too large nor too small [23]. For this 

reason, odd-number values of K ranging from 1 to 5 were 

explored and compared to find the optimum K. 

III. DATA ANALYSIS 

Standard information retrieval statistics was used to 
evaluate performance of the proposed tracheal activity 
recognition algorithm. A confusion matrix was used to 
evaluate performance of each classifier on subject-dependent 
bases. The F1 score was then calculated for each activity to 
compare classifier performances: 

RecallPrecision

RecallPrecision2
1




F

 

     

  

             (1) 

A Recall performance of 1 means that the event of interest 
was correctly classified on all occasions while a Precision 
performance of 1 means that there were no false positives.  
Therefore, the best possible F1 score is 1. 

IV. RESULTS AND DISCUSSION 

In K-NN classifier, each new data point is assigned to the 
class having the largest number of representatives from the K 
nearest points in the training dataset [23]. Therefore, to 
avoid a tie situation in the majority voting scheme, we 
focused on odd-number values of K. Classifier results for 
each activity using K- NN, K = 1, 3 and 5, and Naive Bayes 
are shown in Fig. 1. The 1-NN classifier achieved the highest 
F1 score of 91.2% and 90.2% for chewing and swallowing 
classification respectively.  

A notable property of 1-NN classifier is that in the limit 
N →  , the error rate is never more than twice the 

minimum achievable error rate of an optimal classifier i.e., 
one that uses the true class distribution [23].  

The 3-NN classifier achieved the highest F1 score of 
87.2% for classification of clearing the throat while 5-NN 
achieved the highest F1 score of 75.4% for classification of 
coughing. Naive Bayes classifier achieved the highest F1 

score of 99.4% for classification of speech.  

It is important to note that all classifiers in this study 
achieved the highest recognition rate for classification of 
speech. Since the mel frequency scale is a variant of the 
critical band scale, which is based on perceptual studies and 
intends to select frequency bands with equal contribution to 
speech articulation [11], we expect that having MFFCs as a 
feature for classification contributed to this high 
classification performance for speech. The ability to classify 
speech with almost perfect accuracy can mitigate privacy 
concerns associated with audio-based WHMS by ensuring 
that the user’s conversations can be eliminated before access 
is provided for further analysis on tracheal events of interest 
for health monitoring purposes. 

Table II shows the confusion matrix obtained for subject 
2 using 5-NN. These results show that in the events of 
misclassification, swallowing events were more commonly 
confused as chewing while coughing events were more 
commonly confused as clearing the throat.   

Table III shows a summary of classifier performance for 
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TABLE III.  SUMMARY OF CLASSIFIER PERFORMANCE 

 1-NN 3-NN 5-NN Naive Bayes 

Mean F1 score 0.874 0.873 0.866 0.867 

 
all tracheal activities considered in this study. Each 
classifiers average performance ranged from 86.6% to 
87.4%. These classification results lead us to infer that 
although a sampling rate of 16 kHz is not sufficient to 
preserve all important characteristics in tracheal activities, it 
is sufficient to obtain good classification performance for 
tracheal activity recognition.  

Comparing the results obtained in this work with the 
results presented by Yatani and Truong in [10] for tracheal 
activity recognition, our highest mean F1 score of 87.4% 
outperforms their highest F1 score of 79.5% with support 
vector machine as the classifier. Using 5-NN, in this work 
we achieved an F1 score of 86.6% while in [10] they 
achieved an F1 score of 75.2% using leave-one-sample-per-
participant out.  Similarly, in this work we achieved an F1 
score of 86.7% using Naive Bayes while in [10] they 
achieved an F1 score of 72.2% using the same classifier. 
These results lead us to infer that the list of features used in 
this study may be more comprehensive and therefore more 
effective than those used in [10]. Although it is important to 
note that the authors of [10] considered 12 activities in their 
study which is more extensive than the activities considered 
here and therefore a limitation of this study. 

Since most tracheal activities are non-stationary signals 
that vary with time, taking advantage of the sequential 
relationship between activity window frames may improve 
results obtained in this work. Also, a combination of frame-
level and event-level features can allow for short-time and 
long-time representation of each tracheal activity and allow 
for even better classification. Results presented in this work 
are based on classification of clean signals recorded in a 
relatively quiet environment; further studies are needed for 
tracheal activity recognition in noisy environments. 

V. CONCLUSION AND FUTURE WORK 

We have shown that a sub-optimal sampling rate of 16 
kHz is sufficient for tracheal activity recognition in wearable 
health monitoring systems where power consumption is 
critical. Using a combination of discriminative features from 
previous work in this area, we obtained average 
performances in the range of 86.6% and 87.4% for 
classification of five tracheal activities including chewing, 
clearing the throat, coughing, swallowing and speech. 

Amongst the tracheal events considered, all classifiers 
achieved the highest recognition for speech classification. 
This is promising to mitigate privacy concerns associated 
with neck-worn WHMS interfering with the user’s 
conversations. Comparing K-NN and Naive Bayes classifiers 
for application in wearable systems, we found that 1-NN, 3-
NN, 5-NN and Naive Bayes performed similarly for tracheal 
activity recognition. Future work includes real-time event 
detection and activity recognition from continuous recording 

of daily activities with a wearable neck-wear system in 
uncontrolled environments.  
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