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Abstract— Recent decades have seen BCI applications as a
novel and promising new channel of communication, control
and entertainment for disabled and healthy people. However,
BCI technology can be prone to errors due to the basic
emotional state of the user: the performance of reactive and
active BCIs decrease when user becomes stressed or bored,
for example. Passive-BCI is a recent approach that fuses
BCI technology with cognitive monitoring, providing valuable
information about the user’s intentions, the situational inter-
pretations and mainly the emotional state. In this work, an
architecture composed by passive-BCI co-working with SSVEP-
BCI is proposed, with the aim of improving the performance
of the reactive-BCI. The possibility of adjusting recognition
characteristics of SSVEP-BCIs using a passive-BCI output is
evaluated. In this sense, two ways to recover the accuracy of
SSVEP are presented in this paper: 1) Adjusting of Amplitude
of the SSVEP and 2) Adjusting of Frequency of the SSVEP
response. The results are promising, because accuracy of
SSVEP-BCI can be recovered in the case that it was reduced
by the BCI user’s emotional state.

I. INTRODUCTION

A Brain-Computer Interface (BCI) provides a direct con-
nection between the user’s brain signals and a computer,
generating an alternative channel of communication that
does not involve the traditional way as muscles and nerves
[1]. According to the categorization proposed in [2], active-
BCIs have outputs derived from brain activity, which is
directly and consciously controlled by the user, therefore
being independent of external events [3]; and reactive-BCIs
have outputs derived from brain activity arising in reaction
to external stimulation, which is indirectly modulated by
the user [4]. On the other hand, passive-BCIs have outputs
derived from implicit information on the actual user mental
state, which arises arbitrarily without the purpose of volun-
tary control. The first two categories derive their outputs for
controlling an application and the last one derive its output to
improve human-environment interaction or human-machine
interaction.

A Passive-BCI is a recent approach that fuses BCI tech-
nology with cognitive monitoring, providing to the com-
puter valuable information about the user’s intentions, the
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situational interpretations and mainly the emotional state.
Emotions can be defined as a subjective, conscious expe-
rience characterized primarily by psychophysiological ex-
pressions, biological reactions, and mental state [5]. But,
how can a computer recognize human emotional states?
Affective computing studies and develops systems that recog-
nize, interpret, and process human emotions [6]. Currently,
many affective computing techniques are being developed
to recognize human emotions based on face expressions
[7], physiological reactions like skin conductance [8] or
electroencephalography (EEG) [9], [10], [11]. In the case
of EEG signals, the asymmetry of the frontal lobe, given
by the variation of the alpha band power, is significantly
associated with human emotional states; in which, high alpha
band power in the right hemisphere is associated to negative
emotional states while high power in the left hemisphere is
associated with positive emotional states [12], [13].

It is well known that BCIs, like SSVEP-based BCIs, are
not suitable for all users [14], [15], [16]. The causes for this
inefficiency have not yet been satisfactorily described. Few
studies exist that explicitly investigated the predictive value
of internal (user related) and external (BCI related) factors
on the BCI performance. An integration of the existing
knowledge about factors that influence a BCI performance
into a model of BCI-control was presented in [17]. Four
different aspects that contribute for BCI-control were sug-
gested: 1) individual characteristics of the BCI user which in-
clude physiological, neurological and psychological factors;
2) characteristics of the BCI that comprises hardware and
software components; 3) type of feedback and instruction, in-
cluding feedback modality, presentation within each modality
and instruction that is provided prior to the training; and 4)
the BCI-controlled application, which can range from simple
two-choice to multiple-choice paradigms for communication,
neuro-prosthetic control, and clinical applications. Recently,
a new perspective on BCI has emerged [18], which suggests
that not only voluntary self-regulated signals can be used as
input, but also involuntary signals might tell us something
about the state of the BCI user (e.g. the emotional and
cognitive state). It is assumed that relevant features from
these involuntary signals (also referred to as passive signals)
can be extracted and used to adapt the recognition algorithms
of the BCI. In sum, the knowledge of the emotional state
influences brain activity patterns allowing the BCI system
to adapt its recognition algorithms with aiming the efficient
interpretation of the user’s intentions.

In the present work, an architecture composed by passive-
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Fig. 1. Architecture of Hybrid BCI composed by passive-BCI co-working with reactive-BCI based on SSVEP.

BCI co-working with a reactive-BCI (SSVEP-based BCI) is
proposed. In a typical SSVEP-based BCI system, multiple
stimuli flickering at different frequencies are shown to the
subject [19], [20], [21]. The increase of the SSVEP amplitude
can be detected in the EEG signals and translated into control
commands. However, stimuli flickering could cause a stress-
related emotional state or loss of attention, as reported in
[22]. In this architecture, which is shown in the Figure 1 the
SSVEP-based BCI detects and translates the elicited evoked
potential from EEG signals registered at occipital electrodes
into a command. At the same time, the passive-BCI provides
to the computer information about the emotional state by
monitoring EEG signals on the frontal brain region. The
system is then switched to a ”passive mode” when the
success rate of SSVEP decreases caused by the emergence
of an specific component of emotional state, like stress. In
this mode, the passive-BCI output is able to adjust some
parameters of SSVEP-BCI with the aim of recovering the
accuracy. The accuracy of SSVEP is monitored by a Re-
classifier, which evaluate a number of consecutive results.
The Re-classifier is able to activate a switch if the accuracy
is not being recovered. In this case, an autonomous control
system will take control of the machine. Commands like
”stop the machine”, ”return to previous stage”, or ”call for
help” can be sent by the autonomous decision making to
control the system.

Two ways to recover the accuracy of SSVEP are presented
in this paper: 1) Adjusting the Amplitude of the SSVEP and
2) Adjusting the Frequency of the SSVEP response.

II. MATERIALS AND METHODS

A. Subject

One healthy subject without any experience with BCI
experiments was initially considered in the study. The exper-
iment was taken with the understanding and written consent
of the subject, who gave informed consent. This study was
approved by the research ethics committee of the Federal
University of Espirito Santo (Brazil).

B. Stimulus

Two flicker stimuli was displayed simultaneously on two
5 × 7 LED arranges. Stimuli frequency of 5.6 Hz and 6.4
Hz were generated by analog signal generators. The subject

seated in front of the SSVEP box and asked to focus on the
target LED for 17 s after a beep tone, then asked to close
his eyes for 5 s, ending the trial after a second beep tone.
The EEG signal was recorded between seconds 5 and 17 of
the trial. Two sessions of 10 trials were performed during
the experiment.

C. Signal acquisition

BrainNet36 (BNT) was the device used for EEG acqui-
sition with a cap of integrated electrodes from Electro-cap
company. EEG signals from 19 electrodes (Fp1, Fp2, F7, F3,
Fz, F4, F8, T7, C3, Cz, C4, T8, P7, P3, Pz, P4, P8, O1 and
O2) positioned according to the international 10-20 system
were registered. The grounding electrode was positioned on
the user forehead and the bi-auricular reference was adopted.
The EEG was acquired at a sampling rate of 200 Hz. Signals
were filtered employing elliptic band-pass (4 Hz - 50 Hz).
Signals from O1 and O2 electrodes were used to verify the
SSVEP responses; other channels were employed to perform
common average reference (CAR) spatial filtering, in order
to reduce the correlation between channels originated by
external noise.

III. PROPOSED ARCHITECTURE

As mentioned above, the user was asked to choose one
specific target between two stimuli flickering at 5.6 Hz and
6.4 Hz. Results corresponding to SSVEP potential response
elicited by 6.4 Hz are presented and analyzed in this section.
A particular mental state, such as stress, can affect the
frequency or the amplitude of this potential. Therefore, a
technique based on adjusting the number of samples and a
technique based on the range of search were evaluated to
compensate the frequency and amplitude of evoked poten-
tials, respectively.

A. Adjusting the Amplitude of the Response

The amplitude of the SSVEP response of the EEG signals
depends on the quantity of samples employed to perform the
FFT transform. Figure 2(a) shows four different ways to take
a sample for computing the spectra. 2(b) shows the normal-
ized amplitude spectra corresponding to these different ways.
If n = 200 samples (corresponding to 1 s of data length) are
considered, then the amplitude of the response is weak. So,
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this kind of response will be more affected with changes in
the user mental states. The response becomes more robust
when more samples are considered. Thus, SSVEP response
peak will be strong when 800 samples (corresponding to 4 s)
are employed. In this sense, one way to maintain the SSVEP
potential amplitude could be achieved through adjusting the
data length of each trial.
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Fig. 2. (a) Length of FFT transformation window; (b) Normalized
amplitude spectra corresponding to different data lengths for one subject.

The number of samples increases the data and the process-
ing time, so this assessment maintains the success rate, but
reduces the ITR. In practice, the EEG amplitude spectra was
calculated by using a FFT-based Periodogram with Hamming
windowing.

B. Adjusting the Frequency of the Response
Figure 3 shows the normalized amplitude spectra corre-

sponding to the average of responses of ten trials of one
subject SSVEP (gray) and the average of this trials for
electrodes O1 and O2 when the user was stimulated with 6.4
Hz flickering frequency (black). Electrode O1 presents this
potential at the fundamental frequency of 6.4 Hz without any
other representative peak in the second or third harmonics
(12.8 and 19.2 Hz), while O2 on the other hand, presents
strong responses in the fundamental frequency and in the
second harmonic and a weak potential in the third harmonic.

The frequency corresponding to peaks of amplitude in
frequency domain is compared with stimuli flickering fre-
quencies to determine which stimulus was chosen by the
user. However, it is common that the frequency of the peak
(fundamental or harmonic) is slightly different of stimu-
lus frequency, or other peaks appear at frequency domain.
To solve this problem, Power Spectral Density Analysis
(PSDA), which involves processing in the frequency domain,
was used to perform automatic recognition of SSVEP re-
sponses of the target stimulus.

Fig. 3. Normalized amplitude spectra SSVEP responses corresponding ten
trials (gray) and the average (black) of this trials for electrodes O1 and O2.

So, given k-th stimulus frequency fk, the closer peak
response frequency fh, and the magnitude of the peak
frequency P (fk), the following ratio of proportion was used:

Ratio =
|fk − fh|
P (fk)

. (1)

So, if there is a peak in the same frequency of the stimulus,
the error will be zero. If the error is not zero, the ratio will be
small if the amplitude is high, and at different frequencies,
the error will be small. In this case, fk and fh could be
adjusted. The power spectral density analysis around the
stimulus frequency is given by:

Sk =
mP (fk)

m/2∑
i=�m/2

P (fk + ifr)

, (2)

usually expressed in dB; m is number of samples around the
stimulus frequency, and fr is the frequency resolution which
depends on the Fourier transformation. P (fk + ifr) is the
power density around the stimulus frequency. In this study
m = 60 was considered.

IV. DISCUSSION

Alpha power has been found to be more reliably related to
task performance compared to other frequency bands, when
the tasks compared carefully match on psychometric proper-
ties. Since the alpha power is inversely related to activation,
blocking of or decreases in alpha are seen when underlying
cortical systems engage in active processing. Thus the alpha
power asymmetry may be considered a gradient of power that
exists between the two homologous electrodes in the pair,
with the slope of the gradient being towards the electrode
with the greatest amount of power in this frequency band
[12], [13]. The most commonly reported of the indexes is
computed using the frontal electrodes by subtracting the left
hemisphere alpha power (Plh) of channel F3 from the right
hemisphere alpha power (Prh) of channel F4, as given by,

Assymetry =
Plh − Prh

Plh + Prh
. (3)
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This approach results in an unidimensional scale rep-
resenting the relative activity of the right and left hemi-
spheres, with the middle point of the scale equaling zero
or symmetrical activity. Interpreting this scale, high scores
indicate relative grater left frontal activity whereas lower
scores indicate relatively greater right frontal activity. Since
asymmetry index is the output of a passive-BCI, it can
scale by multiplying parameters such as the closer peak
response frequency fh (See equation 2) and window length
n (See Section III-A) of a reactive-BCI to maintain the
success rate. Regarding the computation of the alpha band
asymmetry, our preliminary results shown in [23] indicates
that asymmetry in the frontal lobe is significantly associated
with human emotion reactivity [12]. The next step in this
research will be to compute the asymmetry index and to
propose a linear equation that relates this index with SSVEP-
based BCI parameters.

V. CONCLUSION

The method of recognizing the fundamental frequency of
an SSVEP elicited response described in the Section III-B
can maintain the error rate by adjusting two parameters fk
and fh, that determine the window width around the stimulus
frequency. Thus, it can be concluded that the limits of the
search range of frequency of the evoked potential and the
number of samples used to compute the FFT transforma-
tion can be adjusted to improve the search of the SSVEP
potential’s frequency. Those results are promising because
this show that passive-BCIs could improve or maintain the
accuracy rate despite of BCI user’s emotional states, such
as stress. In the Section III-A, although the assessment
reduces the information transfer rate, it maintains the error
rate of the reactive-BCI. Since the asymmetry or energy in
alpha band can be used to identify emotional components
of the BCI user, the next step in this work will be to
integrate all components of the architecture proposed given
by the passive-BCI, the SSVEP-BCI, the Re-classifier and
the Autonomous decision making showed in the Figure 1 in
order to develop a more robust BCI.
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