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Abstract— In this study, a novel P300 based brain-computer
interface (BCI) system using random set presentation pattern
and employing the effect of face familiarity has been proposed
and developed. While the effect of face familiarity is widely
studied in the cognitive neurosciences, it has so far not
been addressed for the purpose of BCI. We compare P300-
based BCI performances of a conventional row-column (RC)-
based paradigm with our novel approach. Our experimental
results indicate stronger deflections of the ERPs in response
to face stimuli and thereby improving P300-based spelling
performance. This leads to a significant reduction of stimulus
sequences required for correct character classification. These
findings demonstrate a promising new approach for improving
the speed and thus fluency of BCI-enhanced communication
with the widely used P300-based BCI setup.

I. INTRODUCTION

Several types of EEG-based BCIs have been devel-
oped and can be categorized by the brain activity pat-
terns, which they employ for BCI control: Event-related
potentials (ERPs) [1], steady state visual evoked potentials
(SSVEP) [2], [3], sensorimotor rhythms (SMRs) [4], and
slow cortical potentials (SCP) [5].

The P300 is the positive ERP component, which occurs
over the parietal cortex, approximately 300ms after a rare
(surprising) but meaningful stimulus presentation among a
series of many irrelevant stimuli (i.e. oddball paradigm) [6]
and has been widely investigated over the past few years due
to the high information transfer rates (ITRs), simplicity, and
the need for small sample training data [7].

Since the first introduction of the P300-based matrix
speller (aka P300 Speller) in 1988 [1] many extensions to
the original RC paradigm have been proposed in order to
improve its performance in terms of speed and accuracy.
Some of the various configurations include: (1) electrode
montages, (2) stimulus (or matrix) property (i.e. color, size,
rate and motion) or type alteration (e.g. face) [3], [8], [9],
(3) variations of inter-stimulus intervals (ISIs) (or stimu-
lus onset asynchrony (SOA)) and target-to-target intervals
(TTIs) [10], and (4) redesign of visual stimulus representa-
tion patterns [11], [12].
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In this paper, two improvements to the above men-
tioned issues of P300 spelling are proposed: 1) to mini-
mize adjacency-distraction errors we adopted a random set-
based stimulus representation pattern (RASP), 2) the present
study is dedicated to further investigate the effects of face
familiarity on the performance of BCIs using stimuli of
facial images. In a previous study, we found that brain
activity responses to one’s own face are markedly unique
and show stronger responses when compared to familiar or
unfamiliar non-self faces and this phenomenon was defined
as ‘face-specific visual self-representation’ in [13] for the
neurophysiological basis thereof we refer to [14]. To this
end we designed the paradigm, such that self-faces as well
as non-self faces were presented in a randomized order.

This paper is organized as follows: We start with the Meth-
ods section to introduce the setup and experimental paradigm
of our EEG study as well as data analysis techniques we
applied. In the Results section we describe the experimental
results and finally the Discussion section concludes the work
by discussing our findings and putting them into perspective
with future work.

II. MATERIALS AND METHODS

A. Participants

Fifteen healthy university students who were between 26
and 32 years (mean 27.7 ± 1.5, right-handed, all males) took
part in our experiments. Participants were seated comfortably
in a chair with armrests in a quiet room at a distance of 60 ±
5 cm from a standard 19 inch LCD monitor (60 Hz refresh
rate, 1280 × 1024 screen resolution).

B. Equipment and Data Acquisition

EEG signals were recorded with a sampling rate of 500
Hz with a BrainAmp multichannel EEG amplifier by Brain
Products from the following 29 Ag/AgCl electrodes on a cap
(actiCAP, Brain Products, Munich, Germany), according to
the international 10-20 system: F3, F4, Fz, FC1, FC2, FC5,
FC6, C3, C4, Cz, T7, T8, CP1, CP2, CP5, CP6, P3, P4,
Pz, P7, P8, PO3, PO4, POz, PO7, PO8, O1, Oz, and O2.
Channels were nasion-referenced and grounded to electrode
Fpz.

Face images were acquired using a 3dMD face capture
system. All the face images were processed to remove ex-
ternal features such as hair and then cropped into a common
oval frame which was placed on a black uniform background.
Face images were scaled to an image size of 400 × 500
pixels.
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(a) (b) (c)

Fig. 1. The different conditions of the paradigm. (a) The classical row-column (RC) paradigm, (b) The proposed random set presentation (RASP)
paradigm, (c) RASP-F paradigm with flashing face in one row of the virtual matrix. Both RASP and RASP-F stimuli were shown semi-transparently to
the participants such that the characters were still visible.

C. Experimental Stimuli and Paradigm

All three matrix spellers were presented with a 6 ×
6 matrix and highlighted characters or faces were flashed
consecutively in random order.

In the first proposed variant, called random set-based
stimulus representation pattern (RASP), letters are randomly
shuffled in a virtual six-by-six matrix, prior to stimulus
presentation and then 12 stimulus flashes are presented to
the subject. As a result users see a unique combination of
letters in each stimulus during a given sequence. The number
of stimuli were equal for the RC and RASP paradigms and
the temporal distribution of TTIs was the same on average.

As a second variant, also based on RASP, the characters
were overlaid with face stimuli semi-transparently. This vari-
ant is termed RASP-F. The types of face stimuli, which were
used in the experiments can be divided into 2 categories.
Self-face (when a row is selected) and non-self-face (when
a column is selected) images were used for stimulation.
A self-face image consists of the image of the subject,
while a non-self-face image consists of a familiar face such
as his/her friends or of unfamiliar faces whom he/she has
never seen before. Ratio between self-face and non-self-face
presentation is 50:50. See Figure 1.

Each experiment consists of 2 phases: a training phase
and a test phase. The presentation order of the spellers was
randomized across participants. In each session, participants
were provided with strings of letters they were supposed
to spell. The whole string was displayed at the top left of
the monitor and the next item-to-spell (the target letter) was
displayed above the letter matrix (see Figure 1). During
the initial training phase, subjects had to copy-spell one
sentence ‘BRAIN COMPUTER INTERFACE’. There was
no feedback and EEG was recorded for offline analysis.
In the second phase subjects had to copy-spell another
sentence ‘KOREA UNIVERSITY’ (without the space). The
participant’s task was to attend to (or count) the number of
times the target character flashed. Each run started with a 2 s
countdown. For all speller conditions, each set of characters
flashed for 135 ms, followed by an ISI of 50 ms. When
subjects were instructed to copy-spell, the spelling of each
letter consisted of 10 sequences without a prolonged inter-
sequence interval. One sequence consists of 12 flashes. Note,

that for all cases the target will flash twice.

D. Data Analysis

We used the BBCI toolbox1 for our analysis. EEG data
was band-pass filtered between 0.1 and 30 Hz with a
5th order Butterworth digital filter. In each experimental
session, the data was epoched from -200 ms to 800 ms
with respect to stimulus onset. Epoched EEG signals were
baseline-corrected by subtracting the mean amplitudes in
the -200 to 0 ms pre-stimulus interval from every epoch.
Then, averaged features of the ERPs were extracted from
8 selected discriminative intervals, which were selected by
a well established heuristic, which depends on signed r-
values [15]. After that, these features from the training
phase were validated with the data from the test phase
with the help of a regularized linear discriminant analysis
(RLDA) classifier with analytic shrinkage of the covariance
matrix [15], [16]. For the evaluation of the 3 matrix spellers
classification accuracies (a 0-1 loss function was used) as
well as Information Transfer Rates (ITRs) were computed.
ITRs iven as bits per unit time [bits min−1] are commonly
used as an evaluation measurement for BCIs.

III. RESULTS

A. Classification Accuracy and ITR

Figure 3 depicts the classification accuracy for each sub-
ject as well as averaged accuracies and ITRs for all subjects.
The number of sequences were varied from one to ten
sequences (x-axis) for all three different spellers. Classifier
accuracy was significantly increased when face stimuli were
used as compared to highlighting characters. In the RASP-
F condition, on average fewer sequences (M = 1.1 ± 0.3)
were necessary for achieving an accuracy level of ≥ 70% as
compared to the RC (M = 2.5 ± 1.3) and RASP conditions
(M = 1.9 ± 1.0). This threshold has previously been argued
to be the minimum accuracy level for meaningful commu-
nication [17]. Offline selection accuracies for selecting one
symbol out of 36 by using single sequence data were 58.4%
± 1.6% for RC, 61.3% ± 1.6% for RASP and 84.0% ± 1.2%
for RASP-F. As expected, performance increases sharply
with the number of repetition (F = 63.79, p < 0.001). The

1http://bbci.de/toolbox

1331



-100 0 100 200 300 400 500 600 700 800

-5

0

5

Cz (thick) PO7 (thin)

[ms]

[  
V

]

target

nontarget

-100 0 100 200 300 400 500 600 700 800

-5

0

5

Cz (thick) PO7 (thin)

[ms]

[  
V

]

target

nontarget

-100 0 100 200 300 400 500 600 700 800

-5

0

5

Cz (thick) PO7 (thin)

[ms]

[  
V

]

target

nontarget

-100 0 100 200 300 400 500 600 700 800

-0.01

0

0.01

0.02
Cz (thick) PO7 (thin)

[ms]

[s
g
n
 r

2
]

-100 0 100 200 300 400 500 600 700 800

-0.01

0

0.01

0.02
Cz (thick) PO7 (thin)

[ms]

[s
g
n
 r

2
]

-100 0 100 200 300 400 500 600 700 800

-0.01

0

0.01

0.02
Cz (thick) PO7 (thin)

[ms]

[s
g
n
 r

2
]

s
g

n
 r

2
(T

, 
N

T
)

s
g
n
 r

2

-0.01

0

0.01

s
g

n
 r

2
(T

, 
N

T
)

s
g

n
 r

2
(T

, 
N

T
)

RC RASP RASP-F

Fig. 2. Grand average ERPs and scalp topographies for the three conditions RC, RASP, and RASP-F. Top row: ERPs for targets and nontargets at two
selected electrodes Cz and PO7. The two shaded areas in each ERP plot mark the intervals for which scalp maps are shown underneath. Center: sgn r2

Scalp plots for ERP responses to the target and nontarget classes. Bottom row: Temporal distribution based on sgn r2 at two selected electrodes Cz and
PO7. N250 and P300 components show a higher discriminability for RASP-F as compared to the two other spellers at the central and parieto-occipital
sites.
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Fig. 3. Averaged classification accuracy and ITR curves on all subjects for
three conditions (‘RC’, ‘RASP’, and ‘RASP-F’) using one to ten sequences.

best ITRs of 53.7 ± 11.8 bits/min was achieved by RASP-F
as compared to the 30.3 ± 13.3 bits/min for RC and 32.8 ±
13.8 bits/min for RASP. ITRs also increase sharply with the
number repeated sequences (F = 205.22, p < 0.001).

B. ERP Analysis

Figure 2 shows grand average ERPs and scalp topogra-
phies at representative electrodes Cz and PO7. To test
whether ERP amplitudes differed across spellers, we ex-
amined the data, which was averaged across all subjects,
within selected time intervals at N170 (between 190 and 250
ms, PO7), N250 (between 250 and 350 ms, PO7) and P300
(between 350 and 500 ms, Cz), respectively.

N170 amplitudes evoked by the RC paradigm were slightly
larger than those evoked by RASP with face (RC > RASP-
F: t = 0.42, p = 0.678, RASP < RASP-F: t = 3.65, p =
0.003) mainly due to larger N250 amplitudes evoked by
the face-related stimuli as compared to the the highlighted

characters, especially at the parieto-occipital sites (see center
of Figure 2). The P300 amplitude analysis also revealed
a significant difference among spellers, especially at the
central sites (also see center of Figure 2) (RC < RASP-F:
t = 3.78, p = 0.002, RASP < RASP-F: t = 6.16, p < 0.001).

C. Error and Variation on Target-to-Target Interval Analysis

Figure 4 illustrates the topographical distribution of errors
in relation to the target item for the RC and RASP-F based
paradigms. All target items have been centered in this matrix
for display purposes; the numbers in the black cells represent
the number of correct selections for each paradigm. The
numbers in other cells correspond to the locations of errors
relative to the target location. In the RC many errors occurred
in the direct neighborhood. These non-targets were flashed
simultaneously with the target item in the rows and columns.
The upper matrices show results, if only one sequence is
considered, the lower matrices consider three sequences.
As can be seen, the RASP-F based paradigms successfully
reduce the number of errors, because combinations of letters
were shuffled within each sequence.

IV. DISCUSSION

Accurate target detection with fewer sequence data is still
a challenging problem. For this reason the development of
new paradigms with more effective 1) visual stimulus types,
and 2) stimulus presentation patterns, which elicit stronger
differential ERP responses, is considerably important for
improving the performance of such BCI systems.

To further increase the speed of character selection one has
to focus on reducing the number of stimulus sequences used
for averaging. However, usually several P300 responses must
be averaged for the response to be recognized due to the low
signal-to-noise ratio. By reshuffling and thus creating unique
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Fig. 4. Error distributions for the RC (left) and RASP-F (right) as increasing
the number of sequence. All target items have been centered in each matrix.
The number in a black centered cell corresponds the number of correct
selections and numbers in other cells represent the number of error corrected
selections occurring in each cell relative to the target location for each
speller.

combinations of letters for each flash our findings indicate
increased performance for the same number of sequences
(see Figure 3).

Face stimuli including self- and non-self-faces yielded
significantly higher accuracies and ITRs than those of high-
lighted characters. This implies that stimuli with higher
cognitive task requirements such as facial images, are more
effective than the intensified stimuli of dull characters for a
P300-based BCI system. For achieving a performance level
of ≥70% RASP-F can reduce the overall time needed to
spell a character by a factor of 2.3 on average in comparison
to RC and by a factor of 1.7 in comparison to RASP.

While some individual variation is evident, the individual
participants’ averaged ERPs conform to the grand mean
shown in 2, which shows that both the target and non-target
ERPs differ in several respects across spellers. N250 am-
plitudes are significantly enlarged at parieto-occipital sites.
Contrary to our expectations no significant differences of
N170 amplitudes were found across spellers (see Figure 2).
P300 tends to be more pronounced at the central sites
for face stimuli, against those evoked by the highlighted
character (RC and RASP). This suggests higher level of
cognitive components in the central areas through the face
perception task. Such cognitive components associated with
face perception result in more discriminative features.

We would like to finally remark that our approach as
virtually all other work on P300 spellers is gaze dependent.
However, as pointed out in their seminal contribution [11], a

clear path to gaze independent BCI spellers can be pursued.
Future work will therefore extend the present paradigms
towards gaze independency.
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and A. Kübler, “P300 Brain Computer Interface: Current challenges
and emerging trends,” Frontiers in Neuroengineering, vol. 5, 2012.

[8] T. Kaufmann, S. Schulz, C. Grünzinger, and A. Kübler, “Flashing
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