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Abstract— In recent years it has been shown to be 

possible to create a Brain Computer Interface (BCI) 

using non-invasive electroencephalographic (EEG) 

measurements of covert visual spatial attention. For 

example, that both Steady-State Visual Evoked Potentials 

(SSVEP) and parieto-occipital alpha band activity have 

been shown to be sensitive to covert attention and this has 

been exploited to provide simple communication control 

without the need for any physical movement. In this 

study, potential improvements in the speed and accuracy 

of such a BCI are investigated by exploring the possibility 

of incorporating a P300 task into an SSVEP covert 

attention paradigm. Should this be possible it would pave 

the way for a gaze-independent hybrid BCI based on 

three somewhat independent EEG signals. Within a well-

established SSVEP-based attention paradigm we show 

that it is possible to make a binary classification of covert 

attention using just the P300 with an average accuracy of 

71% across three subjects. We also validate previously 

published research by showing robust attention effects on 

the SSVEP and alpha band activity within this paradigm. 

In future work, it is hoped that by integrating the three 

signals into a hybrid BCI a significant improvement in 

performance will be forthcoming leading to an easily 

usable real time communication device for patients with 

severe disabilities such as Locked-In Syndrome (LIS).  

 

I  INTRODUCTION 

A brain–computer interface (BCI) may be the only 

feasible channel for communication in people with 

very severe disabilities (e.g., amyotrophic lateral 

sclerosis or brainstem stroke), [1]. One attractive 

technology for implementing BCIs is 

electroencephalography (EEG), given that it is 

noninvasive, relatively inexpensive, widely available, 

easily portable and relatively easy to use. Existing 

EEG-based BCI designs rely on a variety of EEG 

signal features, e.g., slow cortical potentials [2],  
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oscillatory activity [3], P300 potentials [4], and steady-

state visual evoked potentials (SSVEPs) [5].  

Recent research has sought to improve BCI 

performance by combining several EEG signal features 

to create a, so-called, hybrid-BCI [6,7]. The rationale is 

that, by designing a paradigm that facilitates the 

simultaneous control of several somewhat independent 

EEG features, one can combine these features to give a 

BCI performance that is better than any individual 

feature. Designing such a paradigm must allow for 

usability on the part of the subject. 

One important consideration for BCI paradigms is 

whether or not the intended user retains control of eye 

movement. If so, then the user can make selections by 

shifting gaze direction – an ability that may, however, 

be more efficiently measured using an eye-tracking 

system. If not, then any appropriate BCI paradigm 

must be independent of eye-gaze. Several studies have 

concentrated on the design of such eye-gaze 

independent BCIs with many exploiting the fact that 

covert visual attention can produce changes in easily 

measured EEG features [8]. These include BCIs based 

on covert attention to stimuli capable of producing 

ERPs (including those with P300 components) [9-14] 

and those designed to elicit SSVEPs [15]. 

The fact that both P300s and SSVEPs have been 

shown to be viable EEG features within the context of 

a gaze-independent BCI suggests that they could be 

combined to produce a gaze-independent hybrid-BCI 

with potentially better performance. Indeed some 

researchers have already considered this combination 

of EEG features in the context of BCIs that allow eye-

movement [6,16-18]. Here we seek to investigate the 

possibility of incorporating a P300 paradigm into an 

established gaze-independent SSVEP-based BCI 

design [15,19]. Indeed this previously published 

SSVEP-based BCI can already be considered a hybrid-

BCI given that it combines somewhat independent 

measures of attention on both SSVEPs and parieto-

occipital alpha band activity. Should it be shown to be 

possible to classify attention based on the P300 in this 

paradigm, then it should be possible to combine all 

three features to produce improved BCI performance. 

 

II  METHODS 

A. Subjects 

3 subjects participated in the study (two female; 
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aged 22–32 yr), all of whom were right-handed and 

had normal hearing. All had normal or corrected-to-

normal vision. 

 

B. Experimental Setup 

Subjects were seated 60cm from a CRT monitor on 

which was displayed two white rectangular flicker 

stimuli situated 2.9° bilateral to a central fixation cross 

on a black background, as shown in Fig. 1. The refresh 

rate of the monitor was set at 60Hz. The boxes were set 

to flicker at a rate outside of the alpha band so that 

alpha band modulations could also be used during 

classification [15]. The left rectangle flickered at 15Hz 

and the right at 20Hz. 

Event-related potential (ERP) studies examining the 

static allocation of visual spatial attention normally 

involve the task of target detection. In the centre of 

each of the white rectangles (4.2x4.2° of visual angle), 

letters from “A” through “H” (1x1°) were presented in 

a random pattern, similar to the paradigm employed in 

[15]. Embedded in the sequence of letters was the 

target letter “C”, occurring with equal probability 

(~0.11). Subjects were instructed to keep count of 

target presentations during each trial and report this 

number by mouse click on completion of the trial. This 

provided a behavioral measure of spatial attention 

performance. The letter in each rectangle was changed 

after 3 flashes of the rectangle on which it was 

superimposed. To facilitate the comparison of discrete 

ERP responses to Cs in the attended and unattended 

hemifield, there was a minimum of 1 sec between the 

occurrence of any C stimulus. 

Continuous EEG signals were recorded from 128 

electrode positions, filtered over the range 0– 134 Hz 

and digitized at a rate of 512Hz using the BioSemi 

Active Two system. 

 

 

    Fig. 1. Stimulus Display 

C. Procedure 

Each subject underwent a total of three blocks, each 

lasting approx. 10 minutes. Each block contained 20 

trials. Each trial started with a red warning stimulus 

lasting 0.5s, followed by a cue stimulus consisting of a 

white fixation cross of the same size with an arrow on 

the left or right arm, lasting 0.5s. Depending on the 

direction of the arrow, the subject was instructed to 

covertly attend to the left or right rectangle while 

strictly maintaining fixation on the central fixation 

cross for 20s. Following the attend period a green 

fixation cross was presented for 5s, signifying a rest 

period. Each session consisted of 20 trials, with an 

equal number cued-left as cued-right, in random order. 

An SR Research Eyelink eye tracker (EyeLink 

version 2.04, SR Research Ltd/SMI) recorded eye 

movements. If a participant blinked or moved their 

eyes > 3.5° from fixation during the trial period, the 

trial was restarted. 

 

III  ANALYSIS METHODS 

A. P300 Feature Extraction and Classification 

For each subject, raw EEG data were first low-pass 

filtered to 8Hz, re-referenced to the average reference, 

then epoched relative to the onset of Cs in both the 

attended and unattended hemifield (-250ms to 

1000ms). Epochs were then baseline corrected with 

respect to a 250 ms prior to the onset of the C. For each 

20 s trial, epochs to attended and unattended epochs 

were averaged separately.  

A simple classifier was used to discriminate whether 

subjects were paying attention to the left or right 

hemifield. Amplitude from a time window of 350ms – 

650ms in the averaged epochs was taken from the 

electrode CPz for the attended and unattended 

hemifield. A hemifield was classified as being attended 

to if there was greater amplitude to Cs appearing in 

that hemifield. 

 

B. SSVEP Feature Extraction 

The raw EEG data of Subject 2 were low-pass 

filtered to 40Hz, re-referenced to the average reference 

and epoched relative to onset of each 20s trial. To 

show the effect of attention on the SSVEP, the power 

spectrum of each trial was plotted from the occipital 

electrode Oz. This allowed a comparison of power in 

the respective frequencies for each hemifield (15Hz in 

the left, 20Hz in the right). 

 

C. Alpha band Feature Extraction 

Raw EEG data from Subject 2 underwent the same 

process as detailed above in the SSVEP analysis. In 

order to demonstrate the presence of alpha band (8 – 

14Hz)  modulations by attention, power in the alpha 

band was plotted for attend and unattend conditions 
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separately for each hemifield. For each 20 second trial, 

the power spectrum was plotted from two electrodes 

commonly used when measuring effects of spatial 

attention on alpha power, PO7 over the left hemisphere 

and PO8 over the right hemisphere [19]. Alpha power 

was then compared in each hemisphere, for attend left 

versus attend right. 

 

IV  RESULTS 

Fig. 2 shows the grand mean ERPs elicited for 

attend and unattend conditions, averaged together for 

left and right hemifields. A clear positivity can be seen 

for the attend condition, peaking at approx. 500ms, in 

line with P300 morphology. Interestingly however, it 

does appear quite late for the P300, which is typically 

between 300 and 400ms for sudden onset stimuli [20].

 
 

Fig.2. ERPs elicited for attend and unattend conditions, 

demonstrating the P300 effect (blue line) peaking at approx. 500ms. 

Classification accuracy for each subject can be seen 

in Table I, with a mean accuracy of 70% for the group. 

All subjects attained a statistically significant level of 

performance (p < 0.05), measured using the binomial 

probability method. 

TABLE I 
CLASSIFICATION ACCURACIES FOR ALL SUBJECTS OVER ALL 

SESSIONS USING THE P300 FEATURE ALONE.  

Subject Attend 

Left (%) 

Attend 

Right (%) 

Mean Acc. 

(%) 

1 82% 67% 74% 

2 58% 75% 67% 

3 73% 61% 68% 

MEAN 71% 68% 70% 

 

   The other features of the paradigm remained 

sensitive to attention. Occipital alpha power was 

influenced by attention, with greater alpha power 

ipsilateral to the attended side, as seen in Fig. 3.The 

SSVEP was also found to be modulated by attention 

such that there was greater power at the SSVEP 

frequency corresponding to the attended hemifield 

(Fig. 4). This effect was much greater in the 15Hz peak 

for the left hemifield, although the effect was still 

present in the 20Hz peak.  

 

IV  DISCUSSION 

We have shown it is possible to classify the 

allocation of attention to the left or right hemifield of 

visual space using the P300 response within a 

paradigm that is known to elicit attention effects on 

both SSVEPs and parieto-occipital alpha band activity. 

This is an important step forward in BCI technology, 

as it has been suggested [21] that a P300 based 

paradigm may be reliant on eye gaze. The present 

paradigm prevented the participant from making overt 

eye movements to focus on the peripheral letter 

streams yet still demonstrated P300 activity robust 

enough to correctly classify attentional allocation well 

above chance levels for all subjects. Furthermore, it 

was demonstrated that other measures such as the 

attentional modulation of SSVEP and alpha band 

power remain. 

 

 
Fig.3. Modulation of occipital alpha power by attention, showing 

greater ipsilateral compared to contralateral alpha power for the 

attended side.   
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Fig.4. Modulation of the SSVEP feature by attention, evident at 

15Hz (left hemifield), and to a lesser extent, 20Hz (right hemifield). 

   Future work with more subjects will combine P300 

measures attained here with the SSVEP and alpha 

power measures gained previously [15, 19] and 

investigate their mutual independence. Kelly et al. 

showed some independence between alpha and SSVEP 

showing that combining them was better than using 

either of them alone [15]. Given that the neural 

generators of the P300 [20] are distinct from those of 

both the SSVEP [22] and alpha [23], we anticipate a 

high degree of independence between these measures. 

 

V  CONCLUSION 

Utilizing solely the P300 measure to peripheral 

targets in a covert attention paradigm, correct 

classification of attended hemifield can be made with 

an average accuracy of 70%. Combination of this 

measure with other BCI measures such as SSVEP and 

alpha power modulation should enhance overall 

classification accuracy, leading to a more efficient BCI 

that is entirely independent of motor movement.  
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