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Abstract— Recently it has been shown to be possible to 

ascertain the target of a subject’s attention in a cocktail party 

environment from single-trial (~60 s) electroencephalography 

(EEG) data. Specifically, this was shown in the context of a 

dichotic listening paradigm where subjects were cued to attend 

to a story in one ear while ignoring a different story in the other 

and were required to answer questions on both stories. This 

paradigm resulted in a high decoding accuracy that correlated 

with task performance across subjects. Here, we extend this 

finding by showing that the ability to accurately decode 

attentional selection in a dichotic speech paradigm is robust to 

the particular attention task at hand. Subjects attended to one 

of two dichotically presented stories under four task conditions. 

These conditions required subjects to 1) answer questions on 

the content of both stories, 2) detect irregular frequency 

fluctuations in the voice of the attended speaker 3) answer 

questions on both stories and detect frequency fluctuations in 

the attended story, and 4) detect target words in the attended 

story. All four tasks led to high decoding accuracy (~89%). 

These results offer new possibilities for creating user-friendly 

brain computer interfaces (BCIs). 

I. INTRODUCTION 

In recent years, a number of studies have utilized linear 
regression methods in order to estimate response functions 
that index how neural activity changes in response to the 
presentation of natural continuous speech [1-4]. This has 
been very useful for studying the cocktail party problem; that 
is, our ability to attend to a single speaker in a multi-speaker 
environment [5]. For example, using electroencephalography 
(EEG) data, it has been shown to be possible to derive 
separate temporal response functions (TRFs) to the amplitude 
envelopes of two competing speech streams, with attentional 
effects evident at around 200ms post-stimulus [6]. However, 
such effects were only discernible after averaging across 
many trials and subjects, a lack of sensitivity not atypical of 
EEG-based cognitive neuroscience studies. More recently, it 
has been shown to be possible to determine which speaker a 
subject is attending to on a single-trial basis (~60 s) [7,8]. 
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Specifically, this was shown in the context of a dichotic 
listening paradigm where subjects were cued to attend to a 
story in one ear while ignoring a story in the other and were 
required to answer questions on both stories [7]. This 
paradigm resulted in a high decoding accuracy that correlated 
with task performance across subjects. Across 40 subjects, a 
mean decoding-accuracy of 89% was achievable. Here, with 
the long term goal of increasing decoding-accuracy within 
this relatively naturalistic stimulus paradigm, we investigate 
the effects of manipulating the attention task on decoding-
accuracy. Our hypothesis is that tasks that require subjects to 
attend to low- or high-level information, or a combination of 
both, may lead to more easily distinguished attentional 
effects in the EEG data. We show that attentional selection of 
one speech stream in our dichotic listening paradigm can be 
accurately decoded using single-trial EEG across four 
different attention tasks. These findings have implications for 
the future development of naturalistic and user-friendly brain 
computer interfaces (BCIs) and for future studies into the 
difficulties encountered by certain cohorts when attempting 
to solve the cocktail party problem [9]. 

II. METHODS 

A. Participants 

Fourteen human subjects took part (mean ± standard 

deviation (SD) age, 24.4 ± 4.1 years; 7 male; 1 left-handed). 

The experiment was undertaken in accordance with the 

Declaration of Helsinki. The Ethics Committee of the School 

of Psychology at Trinity College Dublin approved the 

experimental procedures and each subject provided written 

informed consent. Subjects reported no history of hearing 

impairment or neurological disorder.  

B. Stimuli and Procedures 

Subjects undertook 40 trials, each of ∼60 s in length, 

where they were presented with 2 classic works of fiction: 

one to the left ear, and the other to the right ear. Each story 

was read by a different male speaker and, for both stories, 

each trial began where the story ended on the previous trial.  

Each subject attended to the story in either the left or right 

ear throughout all 40 trials (7 subjects to the left, 7 subjects 

to the right). However the specific attention task was 

changed after every 10 trials. The four different attention 

tasks required subjects to: 1) answer questions on the content 

of the attended and unattended stories, 2) detect irregular 

frequency fluctuations in the voice of the attended speaker, 

3) answer questions on the content of the stories and detect 

frequency fluctuations in the attended speaker’s voice, and 

4) detect target words in the attended stream. Specifically, in 
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condition 1, subjects were required to answer between 4 and 

6 multiple-choice questions on both stories after each 60 s 

trial. Each question had 4 possible answers. In condition 2, 

frequency fluctuation targets consisted of segments of the 

original audio, which were periodically shifted forward and 

backward in time at a rate of 12 Hz, resulting in a ‘vibrato’ 

effect (Figure 1). Targets lasted 250 ms and occurred 7 times 

per trial on average. The intensity of the vibrato effect, and 

thereby the difficulty of detecting the targets, was adjusted 

in real time to maintain a target detection rate of 

approximately 75%.  In condition 3, subjects had to answer 

the same style of question as that from condition 1 and to 

detect the same type of frequency fluctuation as that in 

condition 2. In condition 4, subjects were required to 

respond by button-click within 2.5 s of the presentation of 

the word “and”, which occurred on average approximately 4 

times per trial. The order in which each condition was 

presented was randomized between subjects. Stimulus 

amplitudes in each audio stream within each trial were 

normalized to have the same root mean squared (RMS) 

intensity, and silent gaps exceeding 0.5 s in the speech 

streams were truncated to 0.5 s in duration. Stimuli were 

presented using Sennheiser HD650 headphones and 

Presentation software from Neurobehavioral Systems 

(http://www.neurobs.com). Subjects were instructed to 

maintain visual fixation on a crosshair centered on the screen 

for the duration of each trial, and to minimize eye blinking 

and all other motor activities.  

 

 
Figure 1.  Example of a Frequency Fluctuation Target. Original audio is 

shown in grey, the target audio is shown in black. The periodical delay 

causes a transient fluctuation in the frequency content of the audio, resulting 
in a ‘vibrato’ effect. Onset of the target is denoted by a dashed line. 

C. Data Acquisition and Preprocessing 

Electroencephalography data were recorded using 130 
electrode positions (128 scalp plus 2 mastoids). The data 
were filtered over the range 0–134 Hz and digitized at the 
rate of 512 Hz using a BioSemi Active Two system. Data 
were re-referenced offline to the average of all scalp 
channels. 

In order to decrease the processing time required, all EEG 
data were downsampled by a factor of 8 to give an equivalent 
sampling rate of 64 Hz, after applying a zero phase-shift 
antialiasing filter. The amplitude envelopes of the speech 
signals were obtained using a Hilbert transform, and then 
downsampled to the same sampling rate of 64 Hz to allow us 
to relate their dynamics to those of the EEG. Because 
envelope frequencies between 0.5 and 8 Hz are linearly 

relatable to the EEG [5,10], the EEG data were digitally 
filtered offline with a band-pass filter between 0.5 and 8 Hz. 
The speech envelopes were low-pass filtered with a cutoff 
frequency of 8 Hz. 

D. Stimulus-Reconstruction 

We wished to determine how accurately we could 

estimate to which of the two speakers each subject was 

attending. Our strategy for this was centered on the approach 

of stimulus-reconstruction. This approach attempts to 

reconstruct an estimate of the input stimulus S using 

recorded neural data R via a linear reconstruction model g. 

For a set of N electrodes, we represent the response of 

electrode n at time t = 1 … T as R(t,n). The reconstruction 

model, g(   ), is a function that maps R(t,n) to stimulus S(t) 

as follows: 
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where   denotes the estimated stimulus. The function g is 

estimated by minimizing the mean-squared error between 

the actual and reconstructed stimulus  
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Solving this analytically results in calculation of the 

normalized reverse correlation [11,12] 

                                                                                                         

              

 

where   and S are defined as 
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and 

S = [S(0) S(1) S(2) … S(T)]. 

 

All 128 channels of EEG data were used, since the 

relative contribution from each electrode is weighted by the 

model. Because previous research indicates that EEG 

activity reflects the dynamics of the speech envelope at 

latencies up to 250 ms post-stimulus [1], we attempted to 

maximize the accuracy of our speech reconstruction using 

EEG at time-lags   from 0 to 250 ms post-stimulus. As we 

calculated a mapping from the neural data back to the 

stimulus, in practice we used time-lags from -250 to 0 ms.  

As there were two input speech streams (attended and 

unattended), we trained two decoders per trial: one where 

linear-regression was performed between the EEG and the 

attended stream alone, and another where linear-regression 

R = 
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was performed between the EEG and the unattended stream 

alone. We refer to these as Attended and Unattended 

decoders, respectively. As each subject undertook 10 trials 

per condition, this resulted in 20 decoders for each subject 

per condition (10 Attended and 10 Unattended).  

Each decoder is a two-dimensional matrix (electrode 

channels x time-lags). Stimulus-reconstruction is performed 

by convolving this matrix with EEG data. Multiple decoders 

can be combined by averaging these matrices together. A 

leave-one-out cross-validation approach was used, whereby 

the reconstruction for each trial was made by convolving the 

average of all decoders for that subject from every other trial 

within the same condition.  

For each reconstruction, we evaluated the reconstruction-

accuracy by determining a correlation coefficient (Pearson’s 

r) between the reconstructed speech envelope and the actual 

attended and unattended speech envelope, which we will 

refer to as rattended and runattended, respectively.  

 

E. Combining Attended and Unattended Decoders 

Both the Attended and Unattended decoders can be used 

to decode attention, with varying success. We combined the 

two decoders into a single, more robust algorithm, using the 

difference between rattended and runattended as a weighting factor. 

For each condition, we plotted separate trials in 2D 

space, with rattended - runattended from the Attended decoder on 

the horizontal axis and runattended - rattended from the Unattended 

decoder on the vertical axis (Figure 2). The classifier was a 

straight line crossing the origin of the plot, and determined 

to be perpendicular to the resultant vector of all the trials 

within the condition. That way, if either the Attended or the 

Unattended decoder performed better than the other decoder 

for a specific condition, it would contribute more to the 

classification process. 

Decoding accuracy was calculated as the percentage of 

correctly classified trials for each condition separately. 

 

 
Figure 2.  Illustration of the combination of the Attended and Unattended 

decoders. Data from 10 trials from 1 subject are plotted as crosses and a 
circle, with r_attended – r_unattended from the Attended decoder on the horizontal 

axis and r_unattended – r_attended from the Unattended decoder on the vertical axis. 

If only the Attended decoder was used, a decoding accuracy of 90% would 
be achieved, because for 9 out of 10 trials r_attended > r_unattended (crosses). By 

incorporating the Unattended decoder, the classifier is changed and the 10th 

trial (circle) is correctly classified as well, resulting in 100% decoding 
accuracy. 

III. RESULTS 

A. Behavioral Results 

Our behavioral results are summarized in Table I. In 

condition 1, subjects were clearly compliant in the task. On 

average, subjects correctly answered 77.9 ± 8.6% of 

questions on the attended story which was statistically 

greater (P < 0.001) than the 25.3 ± 7.2% questions answered 

correctly on the unattended story. This is in line with 

previous reports on dichotic listening behavior [6,7,13]. For 

conditions 2, 3 and 4 subjects demonstrated that they could 

perform the target detection task with an accuracy in line 

with our design. For condition 3, the percentage of questions 

answered correctly was significantly lower than that for 

condition 1 (P < 0.001). This was likely due to the increased 

difficulty of this dual-task condition.  

TABLE I.  BEHAVIORAL PERFORMANCE ACROSS CONDITIONS 

Attention 

Condition 

Task Performance (Mean ± SD) 

Attended 

Questions  

Unattended 

Questions 

Target Detection 

Accuracy 

1 77.9 ± 8.6% 25.3 ± 7.2% - 

2 - - 76.3 ± 4.7% 

3 66.3 ± 10.2% 23.8 ± 9.1% 77.1 ± 3.2% 

4 - - 75.0 ± 13.0% 

 

B. Decoding-Accuracy 

Across all four attention conditions, we were able to 

decode attentional selection with a high degree of accuracy 

(Table II). We successfully decoded attentional selection 

with an average accuracy ranging from 87.9% to 90.7%, 

depending on the condition. A boxplot (Figure 3) shows the 

distribution of Decoding Accuracies for each condition. 

Using a non-parametric Friedman test, no significant 

differences were found in Decoding Accuracy across 

conditions (χ
2
(3) = 0.448, P = 0.93). 

TABLE II.  DECODING ACCURACY FOR EACH CONDITION 

 
Attention condition 

1 2 3 4 

Mean Decoding 

Accuracy ± SE 

90.0 ± 

2.8% 

88.6 ± 

3.6% 

90.7 ± 

3.0% 

87.9 ± 

5.4% 

 

 
Figure 3.  Boxplot of Decoding Accuracies across all four conditions. For 
each box, the central line is the median, the edges of the box are the 25th 

and 75th percentiles, the whiskers extend to the most extreme datapoints not 

considered to be outliers, and the outliers are plotted as individual circles. 
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IV. DISCUSSION 

We have successfully replicated previously published 

research [7] showing that it is possible to accurately decode 

attentional selection in a cocktail party environment from 

unaveraged EEG data. In particular we have shown that this 

is possible in a high-level task where subjects are required to 

attend to one of two simultaneously presented stories and to 

answer questions on the content of the story. Importantly, we 

have gone further than this previous research by showing 

that accurate decoding can also be performed under different 

task conditions: a low-level task involving detection of 

frequency fluctuations, a medium-level task involving 

detection of target words, and a dual task (low and high-

level) involving both the detection of frequency fluctuations 

and the answering of questions on the story content. 

Behaviorally, all four of our task conditions clearly 

demonstrated subject compliance with high accuracy on the 

frequency and word detection tasks, and a significant 

difference between the performance on answering questions 

to the attended and unattended stories. 

In keeping with the hypothesis underlying the study, this 

behavior was reflected in the ability to accurately decode 

attention from the EEG data. The ability to decode 

attentionial selection is very clear, with average decoding 

accuracies ranging from 87.9% to 90.7%, depending on the 

condition. There were no statistical differences in decoding 

accuracy between any of the attention conditions. This was 

despite the fact that performance on answering questions on 

the attended story in condition 3 was significantly lower than 

that in condition 1. One may have expected a difference in 

decoding accuracy between these conditions given previous 

reports of a correlation between behavior on this task and 

stimulus reconstruction accuracy [7]. However, it is likely 

that decoding accuracy remained high because of the 

attention required to perform the concurrent frequency 

fluctuation detection task.  

One other consideration when comparing decoding 

accuracy across conditions is the relatively small variability 

in the data. Future work will aim to investigate task-related 

differences in decoding accuracy, when smaller amounts of 

EEG data are used to decode attentional selection. One 

plausible hypothesis is that, because of the increased 

difficulty of condition 3, it may require increased attentional 

engagement on the part of the subjects and thereby result in 

higher decoding accuracies than either condition 1 or 2. In 

addition, future work will investigate which particular time-

lags and electrode channels are most important for 

accurately decoding attention. Previous research using the 

same high-level task as that used here (condition 1), has 

shown that time-lags at around 200 ms post-stimulus are 

most important for decoding attention and that data on 

channels over temporal regions contribute most to stimulus 

reconstruction [7]. Based on previous literature suggesting 

that different attention tasks lead to effects on EEG at 

different latencies [14, 15], we hypothesize that decoding 

accuracy for our low-, medium- and high- level tasks 

(conditions 2, 4, and 1) will be mostly driven by EEG data at 

short, medium and long time-lags, respectively. For 

condition 3 we expect a broader distribution of attention 

effects across time-lags given that the task required both 

low- and high-level attentional engagement. 
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