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Abstract— An electroencephalography (EEG)-based Motor 
Imagery Brain-Computer Interface (MI-BCI) requires a long 
setup time if a large number of channels is used, and EEG from 
noisy or irrelevant channels may adversely affect the 
classification performance. To address this issue, this paper 
proposed 2 approaches to systematically select discriminative 
channels for EEG-based MI-BCI. The proposed Discriminative 
Channel Addition (DCA) approach and the Discriminative 
Channel Reduction (DCR) approach selects subject-specific 
discriminative channels by iteratively adding or removing 
channels based on the cross-validation classification accuracies 
obtained using the Filter Bank Common Spatial Pattern 
algorithm. The performances of the proposed approaches were 
evaluated on the BCI Competition IV Dataset 2a. The results 
on 2-class and 4-class MI data showed that DCA, which 
iteratively adds channels, selected 13~14 channels that 
consistently yielded better cross-validation accuracies on the 
training data and session-to-session transfer accuracies on the 
evaluation data compared to the use of a full 22-channel setup. 
Hence, this results in a reduced channel setup that could 
improve the classification accuracy of the MI-BCI after 
removing less discriminative channels. 

I. INTRODUCTION 

For non-invasive Brain-Computer Interface (BCI), scalp 
electroencephalogram (EEG) signals are often used due to 
its relative ease of setting up and fine temporal resolution [1-
3]. This allows a subject to use his brain signals for 
communication and controlling external devices. For a 
Motor Imagery-based BCI (MI-BCI), the EEG is recorded 
from multiple electrode sites [2],[4],[5]. The multi-channel 
EEG data is then processed and classified into different 
types of motor imagery such as the imagination of 
movement of the left hand, right hand, foot or tongue [6]. 
The translated signal could be used to control the movement 
of a robotic arm for MI-BCI stroke rehabilitation [7]. 

The multi-channel EEG could be processed using various 
signal processing and machine learning methods, such as the 
Common Spatial Pattern (CSP) algorithm [4] and the Filter 
Bank Common Spatial Pattern (FBCSP) algorithm [8], 
where the latter performs a multi-stage process of temporal 
filtering, CSP feature extraction and selection. However,  
multi-channel EEG recordings requires a long setup time, 
due to the preparation of conductive gel into the wet 
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electrodes resulting in inconvenience on the subject [9]. On 
the other hand, a small number of channels may be subject 
to the risk of outliers and artifacts, adversely affecting 
statistical estimation [5]. Hence, various studies have 
proposed computational methods to reduce the number of 
channels used in 2-class motor imagery [3],[5],[10],[11], as 
well as multi-class motor imagery, where channels were 
manually selected [2] or were selected by analyzing Event-
Related Desynchronization (ERD) / Event-Related 
Synchronization (ERS) effects [12]. These methods 
investigated the tradeoff between the number of channels 
used and classification performance. Experimental results 
show that recordings from multiple channels may include 
irrelevant data such as noisy electrode readings that could 
deteriorate classification accuracy [10],[11], and removing 
them could improve or maintain classification accuracy. 

Given these issues related to a multi-channel EEG setup 
in a MI-BCI, this paper proposes 2 approaches to 
systematically select discriminative channels for a reduced 
channel setup in a 2-class and in a multiclass (4-class) MI-
BCI. The proposed Discriminative Channel Addition 
approach and the Discriminative Channel Reduction 
approach, employs a subject-specific approach to add or 
reduce channels iteratively based on the cross-validation 
accuracies obtained using the FBCSP algorithm. The 
FBCSP algorithm has been shown to be effective not only 
on 4-class motor imagery (left hand, right hand, foot and 
tongue) on a 22-monopolar channel setup, but also effective 
on 2-class motor imagery (left hand, right hand) using a 
reduced 3-bipolar channel setup [8]. Hence, a reduced 
channel setup computed using the proposed approaches and 
the FBCSP algorithm, that could potentially remove 
irrelevant channels and improve classification accuracy, will 
be investigated in this paper.  

II. MATERIALS & METHODS 

A. Experimental Data 

The proposed approaches were evaluated on the BCI 
Competition IV dataset 2a [13], where 1 training session and 
1 evaluation session of EEG data from 9 subjects are 
provided. Each session consisted of 288 single trials, equally 
distributed between left hand, right hand, foot and tongue 
motor imagery. Figure 1 shows the structure of each trial. 22 
electrodes were used to record the EEG and the montage is 
shown in Figure 2. The segment of 2.5s to 4.5s of EEG data 
after the start of each trial was used to train the FBCSP 
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algorithm. More details of the protocol are available in [6] 
and [13]. 
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Figure 1 shows the protocol of a single trial of motor imagery. The time 
segment of 2.5s to 4.5s after the start of a trial was used to train the FBCSP 
algorithm 

 

 
Figure 2 shows the 22-channel electrode layout for the BCI Competition IV 
Dataset 2a 
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Figure 3 shows the architecture of the Filter Bank Common Spatial Pattern 
(FBCSP) algorithm for 2-class motor imagery EEG data. MIBIF4 and 
NBPW represent the Mutual Information Best Individual Feature and the 
Naïve Bayes Parzen Window classifier respectively 

B. Filter Bank Common Spatial Pattern (FBCSP) 

A brief description of the FBCSP algorithm and its multi-
class extension is provided as follows. Readers are invited to 
refer to [8] for a more extensive description of the FBCSP 
algorithm. The FBCSP algorithm comprises 4 stages that 
perform an autonomous selection of subject-specific 
temporal-spatial discriminative EEG characteristics for 2-
class MI-BCI, shown in Figure 3.  

The 1st stage performs frequency filtering and artifact 
removal using a filter bank that decomposes the EEG 
measurements into 9 pass-bands from 4-8Hz, 8-12Hz…36-
40Hz. Next, spatial filtering is performed in the 2nd stage by 
linearly transforming the EEG data using the CSP algorithm 
[14] that extracts m pairs of CSP features per filter band, to 
form the following feature vector for the ith trial,  

  1 2 9, , ,i x cf cf cf , (1) 

where cfb2m denotes the m pairs of CSP features for the 

bth band-pass filtered EEG measurements, xi1(9*2m).  

The 3rd stage performs feature selection of the extracted 
features using the Mutual Information Best Individual 
Features (MIBIF) algorithm. This algorithm selects the best 
k=4 features sorted by mutual information with the class 
label in descending order. Since CSP features are paired, the 
corresponding CSP features which come in pairs with the 

selected k features are also selected. Finally, the 4th stage 
performs classification using the Naïve Bayes Parzen 
Window (NBPW) Classifier and the classification rule is 
given as 

  
1,2

arg max |p


 


 x , (2)

where p(ω|x) denotes posterior probability of the class being 
ω=1, 2, given the random trial  1 2, , dx x xx   and d 

denotes the number of selected features from the third stage.  

C. One-Versus-Rest (OVR) Multi-class Extension 

The One-Versus-Rest (OVR) multi-class extension 
employs component binary NBPW classifiers which 
classifies CSP features that discriminates each class from all 
the other classes. For a 4-class MI-BCI, 4 OVR classifiers 
are required. The classification rule of the classifier is 
extended from (2) to  

  OVR
1,2,3,4

arg max |p


 


 x , (3) 

where  OVR |p  x is the probability of classifying x 

between  and ={1,2,3,4}\; and \ denotes the set 
theoretic complement operation. 

D. Proposed Approaches for a Reduced Channel Setup 

The proposed approaches adopt a similar classical 
method in feature selection which evaluates growing feature 
sets (forward selection) or evaluates shrinking feature sets 
(backward selection) [15]. The descriptions of the two 
proposed approaches are as follows: 

 

1) Discriminative Channel Reduction (DCR) 
This approach starts from a full channel setup, with 

individual channels removed iteratively based on cross 
validation accuracies 

 Step 1: Initialization 

Let the set of all channels be represented by A = {1,…,n} 
where each element represents the respective channel 
number. |A| = n = 22. Denote the set of channels used in 
the MI-BCI as D = A initially. 

 Step 2: Cross-validation with each channel removed 

Compute the 10-fold cross validation accuracies 
 \J D j with only channel j D is removed. Select the 

channel k where 

    \ max \
j D

J D k J D j


 .  (4) 

 Step 3: Remove channel k 

Update \D D k . Hence, this approach assumes the 
classification accuracy will improve or will be least 
adversely affected, when removing a noisy or irrelevant 
channel.  Repeat Step 2 and Step 3 until |D| = 3 which is 
the minimum number of channels required for the CSP 
algorithm. 

2) Discriminative Channel Addition (DCA) 
This approach starts from a 3-channel setup, with 
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individual channels added iteratively based on cross 
validation accuracies. 

 Step 1: Initialization 

Initialize set of selected channels D = {8,10,12} which 
represents C3, C4, Cz  and ' \D A D . 

 Step 2: Cross-validation with each channel added 

Compute the 10-fold cross validation accuracies with 
channel 'j D  added.  Select the channel k where  

    
'

max
j D

J D k J D j


   ,  (5) 

and   is the set-theoretic union operation. 

 Step 3:Add channel k 

Update D D k   and ' \D A D . Hence, this approach 
assumes the classification accuracy is improved the most 
when a relevant channel is included. Repeat Step 2 and 
Step 3 until D = A. 

III. EXPERIMENTAL RESULTS AND DISCUSSION 

Subject-specific reduced channel configurations were 
computed using the proposed approaches only on the 
training session data and cross-validation results are 
presented. Session-to-session transfer results of the FBCSP 
algorithm, trained using the reduced channel setups on the 
training session data, and tested on the evaluation session 
data are also presented. The evaluation criteria is the 
classification accuracy for 10-fold cross-validation results 
on the training data session and maximum Kappa value [8] 
for the session-to-session transfer performance.  

Manually selected channel subsets [2] are also included to 
compare performance. These subsets include (a) 20 channels 
{2,…,21}, (b) 17 channels {2,…18} and (c) 13 channels 
{2,4,6,…,14,16,18}. This paper also manually selected the 
smaller channel subsets around the sensorimotor cortex (d) 
11 channels {2,4,6,7,8,10,12,13,14,16,18} (e) 9 channels 
{2,4,6,8,10,12,14,16,18} (f) 6 channels {2,4,6,14,16,18} 
and (g) 3 channels {8,10,12}. For 3 channel configurations, 
m = 1 pair of CSP features is extracted per filter band, while 
for > 3 channels, m = 2 pairs of CSP features are extracted 
per filter band [8].  

A. Classification Results 

The classification results versus the number of channels 
are presented in Figure 4 for 2-class and 4-class motor 
imagery respectively. As a reference for 2-class motor 
imagery, the 22-channel setup yielded 84.57% cross-
validation accuracy and kappa = 0.70. For 4-class motor 
imagery, the 22-channel setup yielded 71.45% cross-
validation accuracy and kappa = 0.58. 

A deterioration in cross-validation accuracies below that 
of the 22-channel setup occurs in both proposed approaches 
for <6 channels. For ≥6 channels, both proposed approaches 
yielded higher cross-validation accuracies than the manually 
selected channels and the 22-channel setup. However, this 

was not consistently translated to session-to-session transfer 
performance; the manually selected channels yielded the 
best kappa of 0.71 and 0.72 at 13 and 17 channels in 
session-to-session transfer, even though its cross-validation 
performance was actually below that of the 22-channel setup 
and the proposed approaches. Note that at 13 channels, DCA 
and DCR yielded kappa = 0.70 and 0.69 respectively. 
Nevertheless, in terms of overall consistency, DCA achieved 
similar or better cross-validation and session-to-session 
transfer results compared to the manually selected channels 
and the 22-channel setups for ≥ 13 channels. 

 

 

 
Figure 4 shows 2-class motor imagery mean accuracy results (top left: 
cross-validation, top right: session-to-session transfer), and 4-class motor 
imagery mean accuracy results (bottom left: cross-validation, bottom right: 
session-to-session transfer) on the BCI Competition IV Dataset 2a. The red 
horizontal line represents the accuracy results of the 22-channel setup. 

 

4-class cross-validation accuracies for both proposed 
approaches were comparable to each other and were higher 
than the 22-channel setup for ≥11 channels. However, a 
drop in accuracies was observed for <11 channels. Similar to 
2-class motor imagery, DCA was again shown to be 
consistent and relatively the best in both cross-validation 
accuracy and session-to-session transfer results for ≥14 
channels where it could yield a cross-validation accuracy of 
>71.45% and session-to-session transfer kappa ≥0.58. Note 
that at 13 channels, DCA, DCR and Manual Selection 
yielded kappa = 0.56, 0.54 and 0.54 respectively. 

B. Absolute Frequency of Selected Channels  

To illustrate the channels selected, the number of times or 
absolute frequency of the channels selected in the 9 subjects 
for both approaches at |D| = 13 is shown for 2-class and 4-
class motor imagery in Figure 5 and Figure 6 respectively.  

For 2-class motor imagery, both proposed approaches 
employ mostly channels around the sensorimotor area (C3 
and C4). Although DCR did not impose the condition that 
C3, C4 must be retained, these 2 channels were still selected 
in a majority of the subjects. DCA uses C3, Cz and C4 as its 
initial set of channels; hence this could be why Channels 2 
to 18 were mostly selected too. For 4-class motor imagery, 
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sensorimotor channels 7 to 13 were selected in a majority of 
the subjects. Unlike the manually selected 13-channel 
configuration, Channel 19, 20, 21 in the parietal region and 
Channel 22 in the occipital region were selected in ≥ 4 
subjects. Existing studies have also found that these 
channels were also selected in their reduced channel setups 
for motor imagery [3],[5],[12]. As noted in one study[5]: 
peripheral channels do not contain the most useful 
information but they could help improve classification. 

  
Figure 5 Absolute frequency map of selected channels of Discriminative 
Channel Reduction (left) and Discriminative Channel Addition (right) for 2-
class motor imagery at 13 channels. Channels which have been selected in ≥ 
4 subjects are shaded darker as indicated by the color bar. 

 

  
Figure 6 Absolute frequency map of selected channels of Discriminative 
Channel Reduction (left) and Discriminative Channel Addition (right) for 4-
class motor imagery at 13 channels. 

 

A limitation in this study is that cross-validation is 
heuristic and need not lead to improved classifiers [16]. For 
example, the manually selected 17-channels yielded lower 
cross-validation accuracy than the 22-channel setup for 2-
class data in Figure 4 but it performed better during session-
to-session transfer. Nevertheless, cross-validation can 
improve generalization accuracy for many real-world 
problems [16]. Also, other factors such as the type of 
classifier and initial set of electrodes employed may affect 
the performance of these methods. Hence the influence of 
these factors could be further investigated in future. 

IV. CONCLUSION 

 This paper proposed 2 approaches to compute a subject-
specific reduced channel subset for 2-class and 4-class MI-
BCI using the Filter Bank Common Spatial Pattern 
algorithm. The proposed Discriminative Channel Reduction 
(DCR) removes channels iteratively starting from all the 
channels, based on the cross-validation accuracies. 
Discriminative Channel Addition (DCA) adds individual 

channels iteratively to an initial set of 3 channels located 
around the sensorimotor cortex, based on the cross-
validation accuracies. In both 2-class and 4-class MI from 
the BCI Competition Dataset 2a, DCA, with a minimum of 
13 to 14 channels, consistently yielded a cross-validation 
accuracy and session-to-session transfer performance which 
is similar or better than that of the full channel setup, DCR 
or manually selected channels. The results of the proposed 
approaches concurred with observations from existing 
studies [3],[10],[11]: when noisy or irrelevant channels were 
removed, classification results improved, but when too many 
channels were removed, performance deteriorated compared 
to using all the channels. Future work will investigate the 
proposed approaches on more datasets to further validate 
their performance. 
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