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Abstract— Individual finger movements are well-articulated 

movements of fine body parts, the successful decoding of which 

can provide extra degrees of freedom to drive brain computer 

interface (BCI) applications. Past studies present some unique 

features revealed from spectral principal component analysis 

(PCA) on electrophysiological data recorded in both the surface 

of the brain (electrocorticography, ECoG) and the scalp 

(electroencephalography, EEG). These features contain 

discriminable information about fine individual finger 

movements from one hand. However, the efficacy of these 

spectral features has not been well investigated under the 

application of various classifiers. In the present study, we set out 

to investigate the topic using noninvasive human EEG.  Several 

classifiers were chosen to explore their capability in capturing 

the spectral PC features to decode individual finger movements 

pairwisely from one hand using noninvasive EEG, aiming to 

investigate the efficacy of these spectral features in a decoding 

task. 

I. INTRODUCTION 

Brain-computer interface (BCI) is a fast growing field in 
the community of biomedical research. Its systems translate 
neurophysiological signals of the human brain into control 
commands for peripheral devices, aiming to assist people with 
severe motor disabilities [1], [2]. Different functional 
modalities of the human brain have been implemented for BCI, 
such as sensorimotor rhythm (SMR) during real movements or 
motor imagery [3], [4], attention-induced P300 [5], and steady 
state visual evoked potentials (SSVEP) [6].  

Among these patterns, SMR gains more interests in BCI 
[7], [8], [9] due to the reason, unlike the other two, that it can 
be evoked without external stimuli. This property of SMR 
opens up the restriction of BCI applications, and offers better 
volitional control experience for BCI users. However, 
SMR-based BCIs suffer from limited degrees of freedom 
(DOFs), i.e., the small number of reliable control signals 
available, which significantly constrains the complexity of 
BCI applications.   

Individual finger movements are well-articulated 
movements of fine body parts, the successful decoding of 
which can provide extra DOF of control signals to drive BCI 
applications. Previous study has showed that spectral features 
extracted from spectral principal component analysis (PCA) 
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contain discriminative information about different finger 
movements in electrocorticography (ECoG) [10]. Another 
study found such features in scalp electroencephalography 
(EEG) as well, advancing the application of individual finger 
movements towards noninvasive BCI applications [11].  
However, the efficacy of spectral features from PCA has not 
been well studies through the selection of different classifiers, 
which is a necessary step when integrating with real-life 
applications. 

Several popular and representative classifiers based on 
either generative or discriminative models could serve the 
purpose of evaluation, including linear discriminant analysis 
(LDA) classifier [12], quadratic discriminant analysis (QDA) 
classifier [13]  and support vector machine (SVM) classifier 
[14]. Among these classifiers, both LDA and QDA find a 
decision boundary to separate different classes. While LDA 
assumes equal covariance matrix for two classes, QDA ease 
up on such a requirement, allowing different Gaussian 
distributions for different classes. The SVM classifier relies 
further on data, by finding a hyper plane, on which the 
boundaries of projections from different classes can be 
maximally separated. 

In the present study, we set out to investigate the efficacy 
of spectral features from PCA decomposition by 
implementing three representative classifiers in decoding 
pairwise finger movements from one hand using noninvasive 
EEG. The achieved results could help further understanding 
these spectral features, as well as providing some reference for 
the selection of classifiers for decoding individual finger 
movements in future noninvasive BCI applications.  

II. METHODS 

A. Experimental Data 

EEG data were recorded from six subjects, one female and 
five males. All subjects are right handed, with mean age of 
27.3. All of them have given informed consents. Data from 
five of them were utilized for analysis, with one excluded due 
to noise. Experiments were carried out in a specialized 
chamber room to shield electromagnetic noise from surround 
environment.  The EGI's Geodesic EEG System 300 (GES 
300) was used with a 128-electrode HydroCel Geodesic 
Sensor Net (HCGSN) to record EEG signals at a sampling 
frequency of 1000 Hz. At the same time, potential differences 
caused by finger movements were captured using five bipolar 
sensors attached to the front and back of each finger. 
Examples of potential differences were shown in Fig. 1(a).  

During the experiments, subjects were instructed only to 
move according to cue words and avoid other movements. 
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The cues were presented using E-Prime software and designed 
as shown in Fig. 1(b). Each trial lasted 6 seconds. For the first 
2 seconds, the screen was blank and subjects could blink their 
eyes or swallow if needed. During the next 2 seconds, a 
fixation cross was shown at the center of screen. Subjects were 
instructed to stare at the cross without any movements. This 
duration served as resting condition in the following data 
analysis. In the last 2 seconds, one of five words (i.e., thumb, 
index, middle, ring, and little) was randomly selected and 
displayed on the LCD screen. Continous finger movements 
were required during this period, and subjects usually were 
able to move the corresponding finger twice in each trial. 
There were either 60 or 80 trials for each finger condition, 
resulting in 300 or 400 trials in total.    

B. Preprocessing 

Raw EEG data usually contain artifacts, such as 
environmental noise picked up by EEG sensors, and motion 
artifacts generated from unwanted movements of subjects. A 
serial of preprocessing steps were applied onto raw EEG to 
increase the signal-to-noise ratio (SNR) of EEG. Firstly, a 0.3 
Hz high-pass IIR filter was implemented to remove DC 
drifting, followed by a 60 Hz notch filter to reduce influence 
from power lines. Secondly, EEG channels with kurtosis 
values larger than 5 were marked as bad channels and rejected 
using EEGLAB toolbox [15]. Their values were then filled by 
interpolation from average EEG readings of surrounding 
channels. Thirdly, with values from all channels fixed, a 
spatial filter named common average reference (CAR) was 
implemented to further increase SNR of EEG [16]. It 
calculated the average potential across all channels for each 
time point, and used it to re-reference EEG from each channel. 
Since common artifacts were usually consistent across all 
channels, they could be removed in such a manner. In the last 
step of preprocessing, independent component analysis (ICA) 
from the EEGLAB toolbox was performed [15]. There were 
64 independent components (ICs) decomposed from the 
original datasets, which represented different brain functional 
substrates. Each IC pattern was inspected, and those 
associated with EEG artifacts were rejected.  After artifact 
rejection, data were projected back to electrode domain from 
IC domain.  

TABLE I.  EXPERIMENTAL TRIALS 

Subject 
Number of Movement Trials 

Thumb Index Middle Ring Little 

1 93 79 80 78 79 

2 87 97 117 97 87 

3 74 59 84 81 82 

4 83 77 86 80 109 

5 68 105 88 71 64 

Simple preprocessing steps were also applied to potential 
differences from bipolar sensors, including band-pass filter 
from 0.5 to 2 Hz to capture the frequency of subjects’ finger 
movements. Following preprocessing procedures, movement 
peaks were selected by criteria taking both amplitude and 
latency of potential differences into consideration (refer to [11] 
for detail). Based on these movement peaks, 1-second 
movement segments of EEG were selected for each finger 
condition. Their corresponding trials of resting condition were 
defined as 1-second segments in middle of the 2-second 
fixation period right before finger movements. Detail 
information about number of trials for each finger condition 
and each subject is listed in Table I. 

C. Spectral Principal Component Analysis 

The purpose of spectral PCA was to reveal underlining 
common spectral features across different finger conditions. 
The 1-second trials from movement and resting conditions 
were transferred into frequency domain by calculating the 
power spectral density (PSD) using a Hanning window. The 
covariance matrix of spectral powers was then constructed, as 
the first step of the spectral PCA decomposition. The values 
on main diagonal of the matrix represent variance on each 
frequency under different conditions, while the off-diagonal 
values reveal inter-frequency variation. Following that, 
eigenvalues and eigenvectors of the covariance matrix were 
calculated. The eigenvectors were sorted by magnitudes of 
corresponding eigenvalues from the large to small. These 
eigenvectors were decomposed spectral principal components 
(PCs), which account for different variance in EEG data 
grouped from different conditions in descending order. 
Finally, spectral data from individual trials of different 
conditions were projected onto each PC to acquire projections 
on the obtained new coordinates in spectral structures. The 
whole procedure was performed on EEG from one channel to 
another for all channels. See details in [11]. 

D. Classification and Verification 

Before the exploration of different classification 
techniques for the decoding task, two aspects of the spectral 
PCA features need to be fixed. First of all, combination of 
projections from the first three PCs were used for 
classification, because they account for most variations in 
EEG data, and our previous study has demonstrated that the 
existence of discriminative information about different finger 
movements on these PCs. The second one is the selection of 
EEG channels to feed into classifiers. The 128 EEG channels 
span across all brain regions, of which only a fraction contains 
information related to finger movements.  To pin down those 
channels that are most informative about different finger 
movements, the coefficient of determination r

2
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In the equation, and are means of trials from two 

conditions of finger movements to be compared, and is 
standard deviation of the joint data. The symbols n1, n2 and n12 

Figure 1. Experimental Design. (a) Potential differences caused by 

finger movements. (b) Each trial protocol. 
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are constants, denoting the number of trials from each 
condition and the joint data, respectively. They were 
introduced in the equation to compensate the effect from 
unbalanced trial numbers of each condition. Only channels at 
brain regions associated with motor functions were taken into 
consideration and rearranged by their corresponding r

2
 values.  

Finally, a universal 50-channel set, that combined top 
channels for each pair of fingers and covered motor, frontal 
and parietal cortices, was chosen for decoding pairs of finger 
movements.  

With decoding features selected, we evaluated their 
decoding efficacy using both generative and discriminative 
model based classifiers, including LDA, QDA, and SVM.   All 
trials were firstly randomly permuted 20 times to acquire 
statistical decoding accuracies. The feature selection steps 
mentioned above were only performed within each 
permutation to avoid double dipping issue. Under each 
permutation, classification using different classifiers was 
proceeded. To compare decoding performance from three 
classifiers, the Student’s t tests were conducted between the 
decoding accuracies of different pairs of classifiers.  

Decoding efficacy of extracted features using different 
classifiers was also evaluated, by comparing to the guessing 
level. The general guessing level for a two-class classification 
problem is 50%, but it only holds for extremely large number 
of samples. In current study, the empirical guessing level was 
used for better evaluation. To achieve the empirical guessing 
level, trials from different conditions were mixed together 
with their class labels randomly permuted 500 times, and 
classification was performed within each permutation to 
acquire the mean decoding accuracy. Then, one-sample 
Student t-test was performed between decoding accuracy from 
each classifier and the guessing level.      

III. EXPERIMENTAL RESULTS 

A.  PC Features 

Fig. 2 presents the profiles of the first three PCs, which 
show different magnitudes along frequencies. The first PCs 
(as depicted by red lines) from all ten pairs of fingers reveal a 
broadband pattern, generally flat across all frequency bands. 
The second PCs (as depicted by green lines) mainly peak at 
alpha and beta bands. The power changes on these frequency 
bands define the mu rhythm phenomenon, which is the main 

composition forming the profiles of second PCs. The third 
PCs (as depicted by blue lines) are with small magnitudes 
around zero with very little variation. These profiles revealed 
by spectral PCA decomposition in noninvasive EEG match 
the description of those found in ECoG [10], indicating the 
strong existence of such features in human EEG from both 
invasive and noninvasive measurements.   

B. Decoding Accuracies 

Fig. 3 presents the decoding accuracies for each pair of 
fingers from three classifiers, using projections on the first 
three PCs as decoding features. Numbers 1 to 5 on top of the 
figure denote fingers from thumb to little, respectively. Small 
variations can be observed for decoding accuracies of 
difference classifiers on different pair of fingers. The trends 
are similar for all classifiers. For each pair of fingers, all three 
classifiers are able to produce decoding accuracies larger than 
50%, but to different extents. Two-sample t-tests show that 
decoding accuracies from LDA are significantly larger than 
those from QDA for most of finger pairs (p < 0.05) except the 
pairs of thumb-little, index-middle and middle-ring. The 
decoding accuracies from SVM exceed those from LDA and 
QDA with significance (p < 0.05) for all the pairs.  

Fig. 4 presents the empirical guessing level achieved by 
classifying different pairs of fingers with randomly permuted 
labels. The average value of the empirical guessing level for 
all finger pairs is 52.38%. Results of statistical tests between 
decoding accuracies from different classifiers and the 
empirical guessing level show that, with the extracted features, 

Figure 2. Profiles of the first 3 PCs. Each line represents PC from one 

pair of fingers from one subject  
Figure 3. Decoding accuracies using different classifiers for each pair 

of finger movements. 1: thumb, 2: index, 3: middle, 4: ring, 5: little.  

Figure 4. Classification results for each pair of fingers with randomly 

permuted labels. Red horizontal line depicts the average emperical 

guessing level. 
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all three classifiers are able to deliver decoding performance 
significantly higher than random for all finger pairs (p < 0.05).  
Mean decoding accuracies for LDA, QDA and SVM are 
66.45%, 64.95% and 73.80%, and they are all significantly 
higher than the empirical guessing level as well (p < 0.05). 

IV. DISCUSSION 

In present study, we examined the spectral features 
revealed from the PCA decomposition, and evaluated their 
decoding efficacy using different types of classifiers for 
pairwise decoding of finger movements from one hand.  PC 
features found in noninvasive EEG were similar to those in 
ECoG. With the PC features, all classifiers were able to 
produce decoding accuracies significantly higher than the 
empirical guessing level (p < 0.05), but varied in decoding 
performance, indicating their different abilities to exploit the 
PC features for the decoding task. 

Both LDA and QDA fall into the categories of generative 
modeling classifiers, which construct the distribution models 
for both classes and calculate the posterior probability of each 
class based on Bayes’ theorem. Decoding accuracies from 
LDA were higher than those from QDA for most pairs of 
finger movements, demonstrating that estimation of identical 
covariance matrices for different classes could be a better fit 
for the PCA features than different ones for such classifiers. 
On the other hand, SVM is one of the classifiers based on 
discriminative modeling. It converts data from the original 
domain to a hyper plane, on which the boundaries of different 
classes can be mostly separated. Significantly higher decoding 
accuracies achieved by SVM compared to either LDA or 
QDA (p < 0.05) demonstrate that the PC features extracted 
could be better separated on the hyper plane than 
manipulations on the original domain, and that discriminative 
modeling based classifiers might be more suitable to exploit 
the PC features for the finger decoding task.  

Although the extracted PC features yield significant 
decoding performance than the empirical guessing level in all 
classifiers tested, the achieved decoding accuracies did not 
live up to the standard for real-life BCI applications. There 
could be several aspects to examine for the sake of improving 
decoding accuracies. Firstly, the current work is preliminary, 
and more classifiers based on different theories in the machine 
learning field can be included for evaluation, in search for 
optimal classifier to accomplish the specific decoding task. 
Secondly, similar trends of decoding performance on different 
finger pairs across all three classifiers indicate naïve biology 
of hands, such as co-activation of adjacent fingers, could 
affect the decoding performance as well. Therefore, excluding 
some fingers, that would easily cause confusion or 
co-activation, from the decoding task may worth exploring in 
order to improve the overall decoding performance.  

To sum up, the present study explored several typical 
classifiers for decoding pairwise finger movements from one 
hand using noninvasive EEG, with features extracted from 
spectral PCA. All classifiers delivered decoding performance 
with statistical significance, demonstrating the efficacy of 
spectral PC features in decoding individual finger movements. 
The SVM type of classifiers shows better ability in capturing 
the PC features with decoding accuracies surpassing the other 

two. The results of the present study could speed up the 
process of utilizing finger movements for BCI control, by 
exploring different classification techniques for the extracted 
PC features.  
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