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Abstract— Feature extraction is a critical step in real-time 

spike sorting after a spike is detected. Features should be 

informative and noise insensitive for high classification 

accuracy. This paper describes a new feature extraction method 

that utilizes a feature denoising filter to improve noise immunity 

while preserving spike information. Six features were extracted 

from filtered spikes, including a newly developed feature, and a 

separability index was applied to select optimal features. Using a 

set of the three highest-performing features, which includes the 

new feature, this method can achieve spike classification error as 

low as 5% for the worst case noise level of 0.2. The 

computational complexity is only 11% of principle component 

analysis method and it only costs nine registers per channel.  

I. INTRODUCTION 

A study of demographic and injury trends has shown that 
millions of humans suffer severe body paralysis and cannot 
move their limbs [1]. Recent experiments on neuroprosthetic 
control by individuals with tetraplegia have demonstrated that 
brain machine interfaces (BMI) can provide a solution to 
restore motor function [2]. BMI devices utilize 
microelectrode arrays (MEA) for extracelluar recordings of 
neural signals from individual neurons. Because a single 
electrode usually receives neural signals from multiple 
neurons and BMI depends on single-unit activity inputs, 
real-time spike sorting hardware is mandatory for neuronal 
signal processing. With the advent of high density MEAs, 
future BMI devices could incorporate a large number of 
electrodes, on the order of one thousand [3, 4]. To support 
implantable BMI applications, the algorithm development and 
hardware implementation of spike sorting methods must be 
both power and area efficient. 

One of the important steps in spike sorting is feature 
extraction (FE), which occurs after a spike is detected and 
extracts the most informative features from detected spikes 
that are then fed into a clustering block for spike 
identification. On one hand, hardware efficiency requires that 
FE algorithms be computationally simple for the purpose of 
low power consumption. On the other hand, the number of 
features extracted should be as small as possible to ease the 
design complexity and thus the area of the following 
clustering block. Traditional methods like principle 
component analysis (PCA) [5] and discrete wavelet 
transforms (DWT) [6] demand significant multiplicative 
operations, and DWT produces a large number of features. 
Recent studies on hardware-efficient FE algorithms like 
integral transforms (IT) [7], zero crossing features (ZCFs) 
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[8], discrete derivatives (DD) [9], and first and second 
derivative extrema (FSDE) features [10], use only additive 
operations to reduce the computational complexity by at least 
95% and generate no more than four features. These methods 
aim to maximize between-class variances in features, but they 
neglect within-class variances due to the effect of noise. 
Neural signals have been shown to suffer high background 
noise during daily recordings [11]. The existence of noise on 
features degenerates the separability between different types 
of spikes. Thus, it is desirable to develop a feature extraction 
approach that is both insensitive to noise and hardware 
efficient.  

In this paper, a new FE method is presented that utilizes a 
feature denoising (FD) filter to improve noise immunity of 
extracted features. Fig. 1 shows the dataflow path of the new 
FE method. Detected spikes are processed by an FD filter 
before features are extracted. The FD filter is designed based 
on an analysis of the power spectrum of neural spikes and 
background noise. A set of features are then extracted from the 
filtered spike samples, including extrema, peak-to-peak 
amplitudes, ZCFs, and a new feature called integration of 
repolarization (IR). An optimal feature vector is selected from 
the feature set according to a separability criteria. Finally, the 
performance of this FE method is compared with other 
methods in terms of both clustering accuracy using the 
K-means algorithm and computational complexity as 
measured in hardware resource counts. 

II. DESIGN OF FEATURE DENOISING FILTER 

A. Simulated Datasets 

Simulated neural signals sampled at 24KHz will be used 
for analysis in this paper [6]. They include four datasets with 
each dataset containing three different spike shapes at four 
different noise levels from 0.05 to 0.2. The authors label their 
datasets as Easy1, Easy2, Difficult1 and Difficult2. The noise 
level is defined as the standard deviation of background noise 
normalized with respect to the spike peak. Overlapping spikes 
are not considered in this paper. 

B. Spectral Analysis of Spikes and Noise 

Usually, a white noise distribution is assumed for noisy 

Computationally Efficient Feature Denoising Filter and Selection of 

Optimal Features for Noise Insensitive Spike Sorting 

Yuning Yang
a
, Samuel Boling

a
, Amir Eftekhar

b
, Sivylla E. Paraskevopoulou

b
, Timothy G. 

Constandinou
b
, Andrew J. Mason

a
 

a 
Department of Electrical and Computer Engineering, Michigan State University, USA 
b 
Department of Electrical and Electronic Engineering, Imperial College London, UK  

 
Fig. 1. Procedure of feature extraction method.  
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signals. However, neural signals exhibit a similar 1/f power 

spectrum in both spikes and noise [6]. A simple derivative 

method is used in [12] to emphasize high-frequency spike 

information. To better distinguish between spike information 

and noise, signal to noise ratio (SNR) is examined in the 

frequency domain.. This SNR is defined as  
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where P() is the power spectrum of analyzed signals and is 
defined as square of Fourier transform normalized by the 
length of signals. The power spectra of mean spike templates 
in the datasets are calculated and compared with the noise 
spectrum. Fig. 2 shows SNR for all the datasets with three 
templates in each dataset under a high noise level of 0.2. The 
spikes can be easily distinguished in the frequency range from 
3KHz to 7KHz. In the lower and higher frequency bands, the 
noise has a significant impact on spikes and the spectra of 
spikes are overlapped. This implies that a FD filter should be 
designed by emphasizing the power spectrum in this 
frequency range. 

C. Design of FD Filter 

An ideal FD filter should have passband from 3KHz to 
7KHz and stopband in other regions. A trade-off exists 
between the accuracy of frequency response and the number 
of filter taps, since longer filters require more registers for 
hardware implementation. In spike sorting DSP, registers 
dominate a huge fraction of the circuit area. As the number of 
channels is scaled up to one thousand in the future, 
minimization of area for each channel is a critical concern in 
the design. 

Assume the FD filter has an impulse response given by  

 





N

i

i
incnh

1

),()( 
 (2) 

where N is the length of filter h(n) and ci are the filter 
coefficients. Its Fourier transform can be expressed as  
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To have a desired frequency response, h(n) should at least 
meet the following constraints:  
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where c is the center frequency. To obtain the coefficients ci, 
the following optimization problem should be solved under 
(4) [13]:  
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where G() is a weighting function and is chosen to have a 
higher weight near the center frequency than in low or high 
frequency regions. Fig. 3a compares the length of the filter 
against the width of its transition band. The length of filter has 
to be five at least, which results in the maximum transition 
bandwidth of 0.5. Here six was chosen to be the length of filter 

with transition bandwidth of 0.49 for the purpose of providing 

better attenuation at stopband. In this case, G() is defined as 

1/2-|1/2-| as shown in Fig. 3(b) in order to ensure a 

symmetric frequency response with c near 1/2. Using the 
optimization tool box in Matlab, h(n) is found to be: 

 h(n) = [ 0.5 -0.5 -1 1 0.5 -0.5 ] (6) 

Fig. 3c shows the frequency response of h(n) and illustrates 
that (3) is met. It can be seen from (6) that convolution with 
such a filter only requires operations of shift and addition, and 
thus can be easily implemented in hardware.  

III. FEATURE EXTRACTION AND EVALUATION 

A. Feature Sets 

After spikes are processed by FD filter, features are 
extracted in the filtered spike samples to reduce the noise 
effect. Traditionally, maximum, minimum and peak to peak 
(PtP) amplitude are used to separate different spikes [5, 10]. 
These features are considered here for filtered spikes. ZCFs 
are also considered using filtered spike samples, but the 
positions of zeros are determined from the original spikes.  

One important characteristic of the shape of a spike is its 
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Fig. 2. SNR of three spikes in the frequency domain for different datasets. 
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(b)                                                      (c)  

Fig. 3. (a) The length of the filter as a function of transition bandwidth. (b) 

Weight function of G(). (c) Frequency response of the FD filter. 
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repolarization phase. Discrete wavelet transforms have been 
used to obtain this localized time and frequency information 
[14]. Fig. 4 shows the Wigner distribution of a spike template 
whose power spectrum is described in the time-frequency 
domain. It can be seen that the repolarization phase occupies a 
significant amount of power while there is negligible power in 
the spike's refractory period. Integration of filtered samples in 
this repolarization phase could provide useful information for 
discriminating spike classes, This phase starts from the point 
where the maximum amplitude in an original spike is detected 
(explain this when you first use the term, earlier in the 
paragraph). This new feature, named as integral of 
repolarization (IR) can be expressed as  
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where xfiltered represents a denoised spike and Imax indicates the 
position of maximum amplitude of an original spike. M is the 
window size of integration beginning from Imax. Fig. 5 shows 
the averaged ratio of power in the window size M to the total 
power after Imax calculated from all the spike templates in 
these datasets. Thus, M is set to be ten because 80% of power 
is included in this window.  

B. Feature Evaluation 

Fig. 6 illustrates all the features extracted for evaluation and 
selection. Usually, each feature has its own specific 
separability on certain spike types. A combination of the 

features should be selected in order to achieve high 
separability among different types of spike. The combination 
can be a subset or all of the features. Generally more features 
yield better distinction between spike shapes [5]. It is 
necessary to examine whether a subset of features could 
provide performance comparable with that of the entire set. 

A separability index (SI) is introduced to evaluate a 
feature vector [15]: 
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Here, t represents the whole data set. tk
’
 is the nearest neighbor 

of tk using Euclidean metric. K is the total number of points in 
the data set. f is a binary target function which is equal to +1 if 
tk belongs to class i and -1 if tk belongs to class j. mod2 repents 
modulo two operation. Thus, SI is zero if two classes are fully 
overlapped and one if they are totally separable. The 
permutations of the feature subsets are evaluated and 
compared with all of the features at a noise level of 0.2 in 
table I. Table I lists the best subsets of two, three, four and 
five features against the performance of all features. The best 
subset of two features still has a limitation on a particular 
dataset but can achieve high SI on others. By adding one more 
feature, the best three features can improve the separability by 
11% on the dataset that is predicted poorly by the best two. 
Although best set of 5 and 6 features provide the best 
performance, they are only slightly better than the best set of 
three. Thus, the best three feature subset is used to represent a 
spike for clustering. The selected features are maximum, 
minimum, and integral of repolarization. 

IV. RESULTS 

K-means clustering with the maximum number of 

iterations limited to 20 was used to test the spike classification 

performance, and the results of our method using denoising 

filter are compared with PCA, FSDE and DD methods in Fig. 

7. Because there are three features used in this work, the same 

 
Fig. 4. An example Wigner distribution (bottom) of a spike (top). 
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Fig. 5. The ratio of power in the window size to the total power after a spike’s 

maximum amplitude.  

 

Table I COMPARISON OF SI ON BEST FEATURES COMBINATIONS 

 Easy1 Easy2 Difficult1 Difficult2 

Best 2 features 1 0.79 1 0.99 

Best 3 features 1 0.90 1 0.99 

Best 4 features 1 0.90 1 0.99 

Best 5 features 1 0.92 1 0.99 

All 6 features 1 0.92 1 0.99 

 

 
Fig. 6. Illustration of all the extracted features from FD filtered spike. 
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number of features of PCA and FSDE are used for fair 

comparison. For DD, 21 coefficients were used based on the 

Lilliefors test [9]. Fig. 7 shows that our new method 

outperforms PCA and FSDE; it can achieve less than 0.4% 

clustering error when the noise level is less than 0.1. The worst 

classification error is less than 5% when the noise level is as 

high as 0.2. Compared to PCA, both have low error for low 

noise levels, but PCA tends to increase the error as noise goes 

high. Compared with FSDE, both are less affected by noise 

variance, but FSDE cannot achieve error free classification 

under low noise levels. Although DD performs slightly better 

classification accuracy for most datasets than this work, it has 

poor performance on the dataset difficult2. Furthermore, both 

PCA and DD methods require training periods to obtain PC 

vectors and DD coefficients. In sum, these results demonstrate 

that the features extracted from FD filtered spikes can provide 

high classification accuracy and are very robust to noise. 

Table II lists the computational complexity and the 

required registers for each compared method where the 

number of samples in a spike is 64 in each dataset. Each 

multiplication is assumed to be equal to 10 additions [7]. PCA 

is both computationally heavy and registers hungry. DD also 

requires a significant number of registers. This work requires 

only 11% of the computations and 9% of the registers required 

for PCA. Although the computation load is higher than FSDE, 

actually, the hardware implementation only takes two more 

adders than FSDE. In summary, the new FE method is 

hardware-efficient for implantable application. 

V. CONCLUSION 

This paper presented a new FE method that uses a FD filter 

to minimize the noise effect on features. A set of features 

including a new IR feature were then extracted from the 

filtered spikes. A separability index was utilized to select and 

evaluate features for different datasets. Based on the analysis, 

three of the features were selected for spike classification. The 

results show that features from FD filtered spikes outperform 

other methods and can maintain the classification error as low 

as 5% under worst-case noise levels. Results also show that  

computational complexity is only 11% of PCA while 

requiring only nine registers per channel. Overall, these 

results demonstrate a useful new FE method for high accuracy 

and low-resource spike sorting suitable for future 

high-density neural recording systems. 
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Fig. 7. Comparison of spike classification error using K-means clustering 

algorithm between this work, PCA FDSE and DD. 

Table II COMPARISON OF COMPLEXITY AND REQUIRED REGISTERS 

FOR DIFFERENT METHODS 

 Addition Multiplication Complexity Registers 

This work 330 0 330 9 

PCA 256 256 2816 64 

FDSE 192 0 192 6 

DD 181 0 181 21 
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