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Abstract— the application of rehabilitation programs based 

on videogames with brain-computer interfaces (BCI) allows to 

provide feedback to the user with the expectation of stimulate 

the brain plasticity that will restore the motor control. The use 

of specific mental strategies such as Motor Imagery (MI) in 

neuroscientific experiments with BCI systems often requires the 

acquisition of sophisticated interfaces and specialized software 

for execution, which usually have a high implementation costs. 

We present a combination of low-cost hardware and open-

source software for the implementation of videogame based on 

virtual reality with MI and its potential use as neurotherapy for 

stroke patients.  Three machine learning algorithms for the BCI 

signals classification are shown: LDA (Linear Discriminant 

Analysis) and two Support Vector Machines (SVM) in order to 

determine which task of MI is being performed by the user in a 

particular moment of the experiment. All classification 

algorithms was evaluated in 8 healthy subjects, the average 

accuracy of the best classifier was 96.7%, which shows that it is 

possible to carry out serious neuroscientific experiments with 

MI using low-cost BCI systems and achieve comparable 

accuracies with more sophisticated and expensive devices.     

I. INTRODUCTION 

The brain-computer interfaces (BCI) allow a wide 
spectrum of applications in both people with any disability 
condition as for completely healthy people. The interaction 
between the user and the BCI system does not occur 
arbitrarily: a series of signals generated by the specific 
mental task execution can be collected, processed and 
classified in order to build applications that can be 
neurocontrolled. To this end, the implementation of multiple 
signal processing and machine learning techniques to 
optimize the interaction processes by creating reliable 
protocols for conducting the online experiments is needed 
[1]. Motor Imagery (MI) is one specific mental strategy for 
BCI and the classification of different mental tasks used in 
this strategy is often a problem that requires the 
implementation of machine learning techniques in order to 
optimize the interaction between the user and a specific 
application [2]. It is believed that the MI, specifically in 
upper limbs can be registered mainly in two particular 
electrodes: C3 and C4 located in the motor cortex (follow 
the EEG 10-20 standard) [3]; however some researchers 
have demonstrated that this condition is user-dependent and 
only use the information from these electrodes could result in 
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significant data loss for a BCI experiment with MI [4], [5]. 
Due to the commercial low-cost BCI systems often do not 
include the C3 and C4 electrodes; there are few 
investigations that use these sensors for the MI experiments, 
because the non-inclusion of these electrodes is often 
synonym of low accuracies in the final result of the classifier. 
Therefore, applications that use BCI systems with MI as 
mental strategy, usually require not only expensive interfaces 
(due to the amount of required electrodes), but also of a 
substantial investment in specialized software, limiting the 
use of the BCI systems [6]. Multiple BCI commercial 
systems exist in the market, which have being widely used 
for applications as videogames [7], multimedia applications 
and assistive devices [2]. One of the most used is the Emotiv 
EPOC, which is a neuroheadset composed by 14 electrodes 
distributed in the 4 lobules [8], this device has been 
successfully used to design applications in emotion 
recognition [1] and selective attention through visual 
stimulus such as steady state visual evoked potentials 
(SSVEP) [9]. However, since the sensor has not electrodes 
C3 and C4 located in the motor cortex where the movements 
are prepared, has not been used with success in experiments 
with MI [10]. Now, despite the variety of available software 
platforms to handling of electroencephalographic (EEG) 
signal from the BCI systems, only a few are open-source and 
contains the required tools for developing applications based 
on virtual reality [11] such as OpenViBe, an open-source 
software platform for the design, implementation and 
analysis of neuroscientific experiments based on BCI 
systems. The software consists of a set of modules that can 
be integrated with certain facility and efficiency to develop 
BCI functional applications, especially those that are 
combined with virtual reality systems [12]. There are four 
features that make OpenViBe an integrated platform for 
development neuroscientific experiments with BCI systems: 
a) modularity and reusability, b) user diversity, c) portability, 
d) virtual reality systems connectivity. This software has 
been previously used for EEG signal monitoring during a 
videogame intervention [13], BCI videogames based on 
virtual reality [12] and for the wheelchair control [10]. 

This paper proposes the use of a commercial BCI system, 
the Emotiv EPOC and the open source software OpenViBe 
for the MI-based experiment implementation and its 
potential use in neurorehabilitation therapies with stroke 
patients using virtual reality videogames. Recently, has been 
found that the use of rehabilitation therapies based on MI 
with BCI systems in stroke patients can induce significant 
changes in neural plasticity due to the use of feedback 
strategies with immersive virtual environments [14]. These 
therapies have some advantages in comparison with other 
techniques such as high temporal resolution of the signal, the 
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portability of equipment, the non-invasive nature of the 
intervention and finally the fun component that have the 
specialized serious videogames for health [13]. In addition, 
the paper describes the support vector machines use, 
specifically the Nu-SVC [15] for two MI patterns 
classification: right and left hand movement imagination.  

II. NEUROMODULATION WITH BCI SYSTEMS FOR MOTOR 

REHABILITATION 

After stroke or brain injury, a large number of subjects do 

not regain the normal gait characteristics or the natural 

movements of the limbs. Some interventions use exercises 

for upper and lower limbs with the expectation of restore the 

motor control through of activity-dependent neuronal 

plasticity, which is widely bound with the synaptic 

connection changes in response to the external stimulus, 

generally correlated with the motor activity. The plasticity 

that has the central nervous system (CNS) has been 

documented by a large number of scientists as functional and 

structural adaptation of the neuronal mechanisms for 

learning new information and acquiring new skills [16]. This 

plasticity can involve modifications in the neuronal synaptic 

intensity in both brain and spinal cord, as fact the plasticity is 

the basis in which the cognitive and motor skills are 

acquired. After stroke, we can generate an extensive 

plasticity in the cortex and in other neural structures 

according to animal and human models [16]. BCI systems-

based approaches could perform direct neurophysiological 

measures (i.e. EEG) to provide feedback to the user with the 

expectation that stimulate the brain plasticity that will restore 

the motor control [2]. The neurofeedback use can improve 

the cerebral function restoration and therefore the motor 

function [17]. The investigations point to three horizons:  the 

identification of practice motor tasks that can produce a 

brain signal that can be used in rehabilitation, identifying the 

characteristics of brain signal that can be used in 

rehabilitation and the practicality (ease of use and precision) 

of the training session with BCI systems. For stroke patient 

survivors, the use of the BCI systems can help to improve the 

performance in the motor learning and the recovery of motor 

function, the use of specific mental strategies such as MI can 

serve as therapy for the retraining of the lost functions.   

[14]. 

III. BCI APPLICATION SCENARIOS 

A. Acquisition Scenario 

In this scenario we recollect the data coming from the 
user training. Once connected the Emotiv EPOC to the 
OpenViBe server, we add the channel selection box in where 
we enlist the set of channels used for the experiment, in this 
case are F3, F4, FC5, FC6, AF3, AF4, F7 and F8, which are 
the nearest electrodes to the motor and premotor cortex. The 
stimulation parameters are defined through the Graz Motor 
Imagery BCI standard [18], which contains the configuration 
of the quantity of samples per class, the labels for each class 
and duration time for visual feedback (the selected 
configuration was 20 samples per class for all the classifiers, 

two MI classes and feedback duration of 3.750 seconds). 
The outputs are connected to visualization box, which allow 
showing the visual stimulus; in this case, we use left and 
right arrows to generate the motor imagery tasks (left and 
right hand movement). The acquisition time is scheduled to 
take approximately time of 7-8 minutes (the first 30 seconds 
is signal without stimulus, in the second 33 the first stimulus 
appears and thereafter, every 11 seconds a random stimulus 
is represented until all 20 samples for each class).   

B. Feature Extraction Scenario  

The particular task observation (as imagining the hand 
movement) produce in the BCI systems a specific effect in 
the brain signals called Event Related Synchronization/ 
Desynchronization (ERS/ERD) in the electrodes that are 
close to neuromotor cortex. A powerful and widely used 
technique for the signal feature extraction in the BCI-EEG 
systems is the Common Spatial Patterns (CSP) [2]. The CSP 
analysis produces spatial filters that are optimal in terms of 
extracting the signals that are more discriminant between two 
conditions. The algorithm allows the identification of spatial 
filters that maximize the signal variance of one condition and 
at the same time minimize the signal variance with the other 
condition [19]. In the second scenario, we applied the CSP 
technique in order to extract the spatial filters for the training 
session signals, which are filtered in the bands related to the 
oscillatory rhythms Alfa and Beta (8 Hz- 30 Hz) where 
ERS/ERD are produced and after specific settings of the 
EEG epochs (segments) are performed. For this experiment 
we use an eight-order CSP filter which allows attributing to 
each of the eight channels, the best spatial components that 
maximize the difference between each class of MI. The 
result is a file that has the spatial filter configuration that will 
be used for classifier training and to carry out the online 
classification.           

C. Classifier Training Scenario 

This scenario is designed to training the classification 
algorithm using the training data and the CSP spatial filter 
obtained in the past scenario. The box Time Based Epoching 
allow to provide epochs in where their specific lengths can 
be configured, for this case the signal is split into blocks of 1 
second with 0.125 seconds of interval (EPOC sample 
frequency 128 Hz and the block size is 16 samples. 
16/128=0.125). This is performed in order to improve the 
computation of Power Spectrum Density (PSD), otherwise 
the spectrum would be coarse or rough; after this feature is 
added as a feature to the classifier. Then the classifier 
training is performed using the Classifier Trainer box which 
can be set to train LDA (Linear Discriminant Analysis) or 
SVM (Support Vector Machine) classifiers. For this work we 
performed probes using three classifiers in order: the LDA, 
the classical version of support vector machines called C-
SVC with a lineal Kernel and a modified version of support 
vector machines called Nu Support vector Classification 
(Nu-SVC), which adds the Nu parameter that allow a control 
of the number of support vectors and margin errors. The 
parameter ν (0,1] is an  upper bound on the fraction of 
margin errors to the training and a lower bound on the 
fraction of SVs. The cost function is: 
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                                     (1)        

Constraints: 

   (2) 
 

Using the RBF Kernel: 

                      (3) 

 
From (1) ν ϵ (0,1] is a preselected parameter,  is the number 
of the training points and ρ is a margin parameter. The 
parameter w is a term the characterizes the model complexity 
and ξ is the EEG data. The Nu parameter was tuned to obtain 
the best classifier result. This parameter indicates a lower 
bound of the number of support vectors to use, given as a 
fraction of all calibration samples and a lower bound on the 
fraction of training samples that are errors (poorly 
predicted). Also, we applied the RBF (Radial Basis Function 
or Gaussian) Kernel that improves significantly la classifier 
accuracy of nu-SVC over the linear Kernel applied over the 
C-SVC classifier. The γ in the RBF-SVM allow to control 
the hiperplane separation shape, whereby the increase of this 
parameter usually increase the number of supported vectors; 
for this experiment we γ = 100. The result of this scenario is 
a configuration file of the trainer, which contains the 
algorithm parameters that will be used for the online 
classification carried out in the last scenario. To evaluate the 
best classifier is used cross-validation (K-fold Test) with 5 
iterations, this parameter allow the computation of the 
accuracy of the classifier and prints it on console.  

D. Online Classification Scenario 

Finally, in this scenario we perform the online 
classification of MI tasks trained with the user. For this we 
loaded the obtain files in the previous scenarios (CSP filter 
training and classifier training). The signals are captured and 
the chosen channels are exactly the same used in the training 
user stage. For the use of the SVMs is necessary add a 
Simple DSP box that allow to move the signal through the x-
0.5 function for the output values of the classifier are 
between 0 and 1. Once again the Graz Stimulator is used in 
order to provide feedback to the user in the online session. 
Since this scenario we perform the communication with any 
extern application, in this case, the videogame engine Unity 
for the communication with the virtual reality activity.       

IV. RESULTS 

We carried out the experiment with eight young university 
students of masculine genre. Each user was instructed with 
the experiment routine just before to start. The interventions 
were performed always at morning (8:00 am. – 9:00 am.) in 
order to avoid accumulated stress factors or excessive 
sweating, also the users were asked to sleep well the night 
before in order to reduce problems with states of drowsiness 
during the operation of the experiment. Lastly the user was 
placed in front of the screen to start the training session.      
For each user, it was evaluated three classifiers: LDA, C-
SVC with lineal Kernel and Nu-SVC with RBF Kernel. The 
figure 1 show a time-frequency map calculated of one user 

during a specific MI task, the maps cover the filtered 
frequency range (8 Hz- 30 Hz) and are performed over FC5 
and FC6 electrodes in where we found the best latency of 
ERD/ERS neuromechanisms.  

 
Figure 1. Spectrogram of a subject 1 in a motor imagery task 

 

The captures are performed in one of the moments in 

which the user is exposed to MI training stimuli in a range of 

4 seconds (in order to take a couple of seconds before).  

Finally the classification results for each user with each of 

the classifiers used for MI mental strategy are presented. The 

NU-SVC behavior with the RBF Kernel shows an 

outstanding performance over the rest of classifiers. The 

manual tuning of Nu parameter, allows that the results 

obtained in this work will exceed previous works with low 

cost BCI systems such as EPOC [20], [21] which always 

have been widely criticized for their low accuracy in 

punctual BCI mental strategies.   

TABLE I. CLASSIFER ACCURACIES. 

Subject LDA (%) C-SVC with Lineal 
Kernel (%) 

Nu-SVC with RBF 
Kernel (%) 

S1 68.1 67.3 95.7 

S2 62.0 62.4 95.6 

S3 73.3 73.3 97.9 

S4 71.0 71.5 98.5 

S5 66.7 71.2 97.2 

S6 68.1 69.4 96.2 

S7 59.4 59.4 95.3 

S8 72.1 71.5 97.5 

PROM 67.6 68.3 96.7 

 

The Nu-SVC classifier using the RBF Kernel and the 

manual tuning of the Nu parameter allow increase more than 

25 % in the classification accuracy with respect to the others 

classifiers. The figure 2 shows the average accuracy of the 

three classifiers for all eight users. This parameterization of 

the support machine through the Nu parameter provides a 

control over the number of supported vector and margin 

errors. Control the number of support vector has implications 

for: (1) run-time complexity, since the evaluation time of the 

estimated function scales linearly with the number of SVs 

[22], (2) training time, for instance, which we use the 

segmentation algorithm  which increase the complexity with 

the vector support  number, (3) possible data compression 

applications- ν characterizes the compression ratio: it 

suffices to train the algorithm only on the SVs, leading to the 

same solution, (4) generalization error bounds: the algorithm 

directly optimizes a quantity using which one can give 

generalization bounds. These, in turn, could be used to 

perform structural risk minimization over ν. Moreover, 
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asymptotically, ν directly controls the number of support 

vectors, and the latter can be used to give a leave-one-out 

generalization bound [15].  

 

 
Figure 2. Classification results of MI patterns with the three classifiers 

 

Finally we design a BCI videogame based on MI strategy 

for neurorehabilitation activities in stroke patients (especially 

in upper limb monoparetics), which is under evaluation in a 

local clinic. The videogame is based on the classic Duck 

Hunt for Nintendo, in where the user needs to imagine the 

movements of their right and left hands in order to shoot 

ducks to the right or left of the screen.  After this promising 

result the next step is to test this approach in stroke patients. 

V. CONCLUSION 

This paper implements a mental strategy used extensively 
for the interaction with BCI systems, the motor imagery 
through a low cost wireless device using open source 
software. Despite of EPOC system limitations in terms of 
provide high quality signals for BCI application, the machine 
learning algorithms implementation such as support vector 
machines can offer high accuracies in bi-class problems 
(98%), comparable with experiments that use more academic 
and expensive BCI systems and with a greater number of 
electrodes. Even though the results show that it is possible to 
use low cost BCI systems such as EPOC to perform rigorous 
neuroscientific experiments, there are some problems 
directly related with the software that often prevent their use 
in more accurate applications and provide better user 
experience when specific mental strategies are used as motor 
imagery: the neuroheadset recording electrodes not fully 
cover the motor cortex on which are effectively recorded the 
ERD/ERS neuromechanisms necessary for MI tasks; further, 
due to the EPOC flexibility the locations of the electrodes 
are not fixed when the neuroheadset is worn, which increase 
the complexity in the experiment reproducibility with the 
same user. The BCI videogames use as a tool for 
neuromodulation in stroke patients is presented as a therapy 
with a high potential to stimulate the neural and CNS 
plasticity that restore the lost motor control. In future works 
we will evaluate the design videogame in groups of stroke 
patients in order to verify the effectiveness of therapy in the 
restoration of some motor skills.      
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