
  

 

Abstract—Multimodal spellers combining visual and auditory 

stimulation have recently gained more attention in ERP-based 

Brain-Computer Interfaces (BCIs). Most studies found an 

improved efficiency compared to unimodal paradigms while few 

have explored the effect of the visual-to-auditory delays on the 

spelling performance. Here, we study five conditions with 

different visual-to-auditory delays, in order to find the 

paradigm that provides the best overall BCI performance. We 

compared the temporal and spatial binary classification 

accuracy as well as the grand-averaged classification accuracies 

over repetitions. Results show that long delays may cause better 

performance in early time intervals corresponding to negative 

ERP components, but better overall performance is achieved 

with short visual-to-auditory delays. 

I. INTRODUCTION 

Event-related potentials (ERPs) allow to investigate 
electrical brain activity at a high temporal resolution, ranging 
from sensory (early ERP components) to higher cognitive 
processes (later ERP components) [1]. The detection of 
attention modulated ERPs in single-trials (or averages of few 
repetitions) are instrumental in one important category of 
brain-computer interfaces (BCIs), which provide direct and 
non-muscular communication methods for people with severe 
motor impairments [2,3]. BCIs that are based on ERPs (such 
as mental typewriting) are commonly considered to be more 
stable [4] and more efficient for selection tasks than other 
paradigms.  

Previous work has successfully allowed participants to 
spell by concentrating on visual and (or) auditory stimuli 
corresponding to letters. Klobassa et al. [5] used a multimodal 
audio-visual speller paradigm to provide a better 'training' in 
initial sessions but using an auditory-only speller in the final 
test sessions. They used simultaneous visual and auditory 
stimuli with a presentation time of 110 ms and an 
inter-stimulus interval of 500 ms. Boll and Berti [6] found that 
the reaction time prolongation and component amplitudes did 
not differ significantly between auditory and bi-modal 
deviants. However, in that study the visual stimulus was 
presented 80 ms prior to the auditory stimulus to account for 
the faster transduction process in the inner ear compared to the 
retina, based on the theory that the visual-to-auditory onset 
delay allows for visual-auditory interaction [7,8],  Senkowski 
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[8] studied audio-visual stimuli that were presented with 
stimulus onset asynchronies (SOAs) ranging from −125 to 
+125 ms. The visual stimuli were white horizontal gratings  
presented on a black background while the auditory stimuli 
were 1600Hz sinusoidal tones presented at  65 dB. 

Recent work has explored using both visual and auditory 
stimuli ‘simultaneously’ to increase the response in the brain 
in hope of improving the BCI’s overall accuracy. While these 
studies have shown such bimodal spellers to be effective, it is 
not clear how to temporally stagger the auditory and visual 
stimuli best to maximize the overlapping information 
conducive to spelling accuracy. Here we discuss an 
experiment that compares the efficacy of using five different 
visual-auditory delays. Temporal and spatial binary 
classification accuracies were compared to find the time 
interval and channels which enabled the most effective 
classification. 

II. MATERIAL AND METHODS 

A. Participants  

Eleven healthy subjects (3 female) aged 22-34 participated 
in this study. Two of the participants had already participated 
in earlier BCI experiments. Each participant provided written 
informed consent, and did not suffer from a neurological 
disease and had normal hearing. All participants were 
included in offline analysis. Participants were all volunteers 
and were not paid for their participation. 

B. Stimuli 

This study compares five different conditions related to 
sensory modalities that can be used to drive a BCI speller. All 
of the conditions use two sensory modalities: visual and 
auditory stimuli. The stimuli are similar to those in existing 
visual and auditory spellers and each encodes the same 
information for each selection. The only variable over 
conditions is the delay between the presentation of 
corresponding auditory and visual stimuli. All of these 
paradigms are designed to allow spelling of 30 symbols: the 
26 letters of the alphabet, a   period ‘.’, a comma ‘,’, a space 
symbol ‘_’ and a backspace symbol ‘<’ that could be used to 
erase the previous symbol. 

The auditory stimuli were presented through a comfortably 
positioned light neckband headphone (Sennheiser PMX 200). 
We choose six stimuli from a similar study [9] which used 
short spoken syllables (‘it’, ’ti’, ‘to’, ’ot’’) uttered by three 
speakers (bass, tenor and soprano) as stimuli. These six stimuli 
were: bass spoken ‘ti’ and ‘to’ (on the left channel), tenor 
spoken ‘it’ and ‘ot’ (on both channel), and soprano spoken ‘ti’ 
and ‘to’ (on the right channel). The duration of each stimulus 
was 130 ms, and we used a stimulus onset asynchrony (SOA) 
of 200 ms.  
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The visual stimuli were presented as in the Center Speller 
[10], using flashings of 6 different visual shapes, each with a 
different color (Fig 1.A). These shapes were presented at the 
center of a 19’ TFT screen with a refresh rate of 60 Hz in a 
pseudo-random sequence. The presentation of each stimulus 
lasted 130 ms with a stimulus onset asynchrony (SOA) of 200 
ms, chosen to match the duration of the auditory stimuli. 
Visual stimuli presentation was time-locked to the screen 
refresh rate. The visual and auditory stimuli were always 
combined correspondingly in all conditions. Such as, auditory 
‘it’ was always combined with visual ‘blue triangle’. Auditory 
left channel ‘ti’ was always combined with visual ‘green 
hourglasses. 

In all conditions, the selections of each symbol are coded 
into two step selections (first selection for group, second 
selection for symbol) of one out of six stimuli, cf. [10]. 
Conditions are named as ‘C-33’, ’C0’, ’C33’, ’C67’ and 
‘C100’. In condition ‘C0’, the timing of the stimulus 
presentation was set such that visual stimulus was presented 
simultaneously with the auditory stimulus (See Fig 1.B). The 
auditory stimuli in other conditions are presented at different 
frame times relative to the visual stimuli. For instance, in the 
‘C-33’ condition auditory stimuli were presented 2 frames 
(about 33 ms) after the corresponding visual stimuli. 
However, conditions ‘C33’, ’C67’, and ‘C100’ were designed 
such that auditory stimuli were presented 2, 4 and 6 frames, 
respectively, before the corresponding visual stimuli. Fig 1.C 
shows the time sequences of five conditions. Fig 1.B takes 
condition ‘C0’ as an example. Blue block stands for the 
duration of visual stimuli, while the pink one stands for 
auditory stimuli. Fig 1.D shows the delays of two conditions 
“C0” and ‘C33’ for a presentation of single visual and its 
corresponding auditory  stimulus. 

C. Procedure 

Electroencephalogram (EEG) signals were acquired using 
a Fast’n Easy Cap (EasyCap GmbH, Munich, Germany) with 
63 Ag/AgCl electrodes placed at the standard positions of the 
international 10-20 system. Channels were referenced to the 
nose, with the ground placed at the frontal area around the AFz 
electrode. Impedances were kept below 10 kΩ. 
Electrooculogram (EOG) signals were also recorded. Signals 
were amplified and sampled at 1 kHz using two 32 channel 
amplifiers (Brain Amp by Brain Products, Munich, Germany).  

The experiment was implemented in Python using the 
open-source BCI framework Pyff [11] with Pygame 
(http://pygame.org) and VisionEgg [12]. Data analysis and 
classification were performed with MATLAB (The 
MathWorks, Natick, MA, USA) using an in-house BCI 
toolbox (www.bbci.de/toolbox). 

Participants were instructed to sit comfortably in a chair 
with a distance of 1 m between their eyes and the screen.  

There were five conditions in total, with 12 distinct 
symbols for each. To choose a symbol, the participants needed 
to conduct a two-step selection procedure, resulting in (12*2 
selections) 24 total selections. 

We chose 12 distinct symbols such that, in the 24 target 
selections required to choose these 12 symbols, each of the six 
targets was to be chosen exactly four times. Then, for each 
condition, we randomly ordered these 12 letters/symbols and 
split them into two groups of six. The participant underwent 
ten total phases of the experiment, each phase requiring them 
to "spell" one of these groups of six letters/symbols for a 
specific condition; two groups of six for each of the five 
conditions give ten phases. We randomly ordered the phases 
with the constraint that the first five phases contained exactly 
one phase per condition, and the same for the second five 
phases. This random ordering process was performed 
separately for each participant. Each phase lasted about 3 
minutes and 20 seconds and the participants were given breaks 
at their leisure between each one to ensure high focus during 
each phase. 

We compared the temporal, spatial and overall 
classification accuracy of these conditions using regularized 
Linear Discriminant Analysis (LDA) with shrinkage of the 
covariance matrix [15]. For temporal accuracy, the data of a 
time window of 20 ms width with a step size of 10 ms of all the 
63 channels were used as the feature. The whole time interval 
([0 – 800 ms]) data of each EEG channel respectively were 
used as temporal feature to obtain the spatial classification. 
However, a realistic estimate of the spelling performance is 
obtained for classification with overall features (all channels 
and whole time intervals were used), cf. [15]. We calculated 
the grand averaged accuracies of different conditions along 
repetitions of stimuli. One repetition stands for one random 
presentation of all six visual and auditory stimuli. 

 

Figure 1. Visualization of the experimental design. 
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III. RESULTS 

A.  Temporal offline binary classification accuracies 

Fig. 2 shows the temporal distribution of discriminative 
information. We observe that the accuracy varies greatly in the 
early temporal regions which represent the early negative ERP 
components from 100 to 200 ms. Classification accuracies of 
the early components increased as the visual-to-auditory delay 
increased. The highest single trial classification accuracy 
during 100 to 200 ms is obtained in condition ‘C100’ (over 
60%), followed by conditions ‘C67’, ‘C33’ and ’C0’. 
Condition ‘C-33’ has the lowest accuracy at the chance level 
of 50%. 

B. Spatial distribution of the classification over channels  

In Fig. 3, we displayed those accuracies per channel as 
scalp topographies as indication of the spatial distribution of 
discriminative information, cf [15]. Condition ‘C33’ has high 
accuracy in the central area (corresponding to the cognitive P3 
component), while the parietal and occipital area did not show 
any superiority. In contrast, condition ‘C-33’ has higher 
accuracy in parietal and occipital areas (sensory visual ERP 
components) than other conditions.  

C.  Overall classification accuracies over repetitions 

Fig. 4 shows the grand averaged accuracies of different 
conditions along repetitions of stimuli. The red line 
(representing condition ‘C-33’) shows the best performance. 
The conditions with the highest visual-to-auditory stimuli 
delays (‘C67’ and ‘C100’) give the worst performance of all 
conditions.   

IV. DISCUSSION 

Campanella [1, 13] suggested that a cross-modal oddball 
design should be used in future studies to increase the 
sensitivity of the P300 amplitude differences between healthy 
participants and those with clinical symptoms. Hessler [14] 
also found that congruent audiovisual stimuli elicited an N2 
response with a shorter latency and a P3 with smaller 

amplitude than auditory stimuli and showed that the whole is 
more than the sum of its parts in audiovisual processing. 
Senkowski [8] has discussed in his study that the precision of 
temporal synchrony can have an impact on early cross-modal 
interactions in human cortex. In our study, we spatially 
compared conditions with different visual-to-auditory onset 
delays, ranging from -33 ms to 100 ms, which are coded as 
conditions ‘C-33’,’C0’,’C33’,’C67’ and ‘C100’. 

The results of the performance are complex. From the 
temporal distribution of discriminative information, we find 
that the accuracy of the early time intervals during 100 to 200 
ms is increased with prolonged visual-to-auditory delay. 
Though condition ‘C100’ has the best early component 
accuracy, and ‘C-33’ has the worst, the accuracies obtained for 
spatio-temporal features give the opposite picture. 

One contribution to the high classification accuracy of 
‘C-33’ could be the brain response in parietal/occipital areas 
(Fig 3). However, another explanation for these seemingly 
contradicting results of ‘C-33’and ‘C100’ could be that the 
discriminative information in condition 'C-33' is contained in 
the combination of early and later components and different 
spatial regions. Thus scattered information is invisible when 
investigating the temporal and the spatial domain separately as 
in Figs 2 and 3, as it can only be exploited with 
spatio-temporal features as in Fig 4. 

A possible reason for the better performance of ‘C-33’ 
could be the short real-time visual-to-auditory delay. 

 

Figure 3. Spatial distribution of the classification over channels 
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Figure 2. Temporal offline binary classification accuracies 
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Condition ‘C100’ has a long real-time delay, which means that 
at the onset of the visual stimuli, the auditory stimuli has 
almost finished. This could explain why the higher delays 
have less accuracy, since there is less overlap between the two 
stimulus modalities. 

 The results shown above indicate the need for further 
investigation of the complex interaction in multimodal 
stimulation paradigms and in particular conditions in which 
visual stimuli predate auditory stimuli. 

V. CONCLUSION 

The brain responses to visual-auditory stimuli with 

different visual-to-auditory delays are complex. The 

tendencies of parietal and central parts are different for 

different visual-to-auditory delays. However, the 

contradictory results of single trial classification and the 

overall classification with different repetitions inspire us to 

investigate further studies to achieve better explanations and 

ultimately determine the ideal delay time for optimal BCI 

application. 
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Figure 4. Grand-averaged accuracy over repetitions 
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