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Abstract— While scalp EEG/MEG source imaging have been
extensively studied in the last two decades, the case of source
localization from invasive measurements has resulted in few
works to date. Yet there is a lot to gain from stereo-
electroencephalographic (SEEG) recordings, providing high
signal to noise ratio measurements of the explored brain
structures. The SEEG setup consists in multi-contact electrodes
inserted in the brain volume, each containing a dozen of
collinear measuring contacts. This particular setup raises the
question of the conditioning of the inverse problem. In recent
works, we have evaluated the feasibility to localize a single
dominant equivalent dipole facing different sensors and noise
configurations. We deepen here the analysis by evaluating the
influence of the chosen subset of sensors and of the number
of averaged time samples on the accuracy of the localization.
We conduct experiments on simulated data as well as on real
epileptic spikes, illustrating the trade off to be made between
these two factors.

Index Terms— EEG, Stereo-electroencephalography (SEEG),
Dipolar Localization, Inverse problem, Epileptic spikes

I. INTRODUCTION

In clinical context, stereo-electroencephalography (SEEG)

is used for exploring targeted structures assumed to be

responsible for the epileptic events. Generally, the SEEG

signals are observed using a bipolar montage, offering a

local vision of the activity in the close neighborhood of

the contacts. If the priors guiding the placement of the

intracranial electrodes are valid and the number of inserted

electrodes is high enough, this evaluation indeed allows a

precise delineation of the epileptogenic zone [1]. However,

a misplacement of the electrodes or a too sparse spatial

sampling might induce imprecisions in the identification

of the pathological structures. By using the raw SEEG

recordings, the propagated potential field of the sources is

preserved, making it possible to identify brain generators

not necessarily in the close neighborhood of the electrodes.

Besides, SEEG are less affected by electromagnetic noise

or by extra-cerebral artifacts constantly polluting the scalp

measurements, and are thus a promising tool for localizing

accurately deep sources in the explored structures.

The EEG inverse problem has been extensively studied [2],

[3], [4], while intracranial measurements have been restricted

for validation purposes [1]. Few studies on the inverse

problem based on invasive measurements can be found
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in the literature. Yvert et al. [5] developed a distributed

source imaging approach for source localization of temporal

auditory areas, using electrocorticographic recordings. Chang

et al. [6] evaluated dipole source estimation from SEEG,

based on simulated data. Still on simulations, Ellenrieder et

al. [7] addressed the intracranial forward modeling problem

using a similar dipole inversion procedure.

In recent works, we studied the SEEG-based dipole source

localization problem [8], [9]. Our approach was based on

an equivalent current dipole model for the source. We

questioned the influence of the spatial distribution of the

sensors and of the propagation model on the localization

performance, as well as the robustness to noise. We provided

experiments and validation on real SEEG recordings of

epileptic spikes, a premiere in such invasive framework.

The main conclusions we drawn is that better localization

performance was achieved when choosing particular sub-

set of sensors, while these performances decreased when

considering the whole set of available sensors. Besides, the

number of averaged time samples were shown to have also

an influence on the localization accuracy. It then appears

that a trade off is to be made between these factors (amount

of sensors, sources to sensors distances and amount of

time samples). In this paper, we provide novel experiments

specifically addressing these questions both on simulation

and on real recordings of epileptic spikes.

II. SEEG FORWARD/INVERSE PROBLEM

A. Forward problem

At each time instant, the general forward problem can be

written as follows [2]:

Φ = K · J (1)

K ∈ R
Nc×(3Ns) is the propagation model (lead field

matrix), coding the distances and the propagation coefficients

between the Ns sources and the Nc captors. Electrical

potentials Φ ∈ R
Nc×1 recorded by the Nc electrodes are

generated by neural sources, usually modeled as equivalent

current dipoles J ∈ R
(3Ns)×1 (considering their projections

in Cartesian coordinates). The propagation of the sources on

the sensors is assumed to be instantaneous, thus resulting in

a linear mixing of the sources in Φ. We suppose that the

recorded potentials can be fully explained by the physiolog-

ical activities in J, no additive noise is then considered1.

1In the present paper, we assume that the potential of the common
reference electrode is 0. The non-null reference problem is addressed by
[10], [11] for scalp EEG and by [12], [13] for SEEG recordings.
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The accuracy of the forward problem written in (1)

greatly depends on the propagation model K. Finite element

models (FEM) approximate the volume conduction through

a discretization of the brain medium. In our simulation,

we have generated a five compartments FEM model: gray

matter, white matter, cerebrospinal fluid, bone and scalp.

The conductivities were chosen constant for a given tissue,

regardless of the orientation (0.33S/m for the gray matter,

0.2S/m for the white matter, 0.33S/m for the scalp and

0.004S/m for the skull bones [14]). More details on our

FEM computation can be found in [9].

B. Inverse problem

The inverse problem aims at estimating the source param-

eters from the measurements based on a given propagation

model. FEM provide high modeling accuracy but is highly

computationally demanding. In previous works [8], [9], we

demonstrated that a simple analytical model like the One-

Sphere Model (OSM) provide a satisfactory approximation

of the inner brain volume conduction.The OSM is based

on an assumption of homogeneity and isotropy inside the

sphere, and remains analytically tractable [15]. In practice,

the brain volume is fitted within a sphere roughly modeling

the border between the skull and the brain, taking into

account the high difference in conductivity at this frontier.

This latter model has been used to perform the inversion task

in this study.

Depending on how the sources are modeled, two classes of

inverse problems can be distinguished [2], [4]. A first class

of approaches use the so-called distributed source models,

leading to a linear but severely ill-posed problem. The second

class of methods (used in this paper) consists in considering

only one (or few) dipole(s), resulting in an over-determined

non-linear problem. In specific cases (ictal activities or

interictal spikes for example), some brain regions (sources)

are generating a signal having a much higher amplitude

than the other regions. In this case, the recorded electrical

activity can be indeed explained with one to few dipoles [1].

We focus here on the reconstruction of a single dominant

dipole, leaving the multiple sources localization problem for

a later study. Reconstructing a dipole implies estimating its

6 parameters, 3 for position and 3 for orientation and am-

plitude. Our goal is to enlighten the main factors impacting

the SEEG-based dipole parameter estimation. Considering a

single dipole, the mixing model of eq.(1) can be written as:

Φ = k · j+N (2)

where k (Nc×3) is the vector corresponding to the projection

coefficients of the dominant source j (3 × 1) on the Nc

sensors. N (Nc × 1) contains the projection of all the other

sources on the electrodes, seen here as additive noise (from

the main dipole point of view).

The algorithm we use for the inversion is the modified

version of the fixed dipole approach [16], including a con-

strained optimization step (the solution is confined to the

interior of the sphere fitting the brain) solved by sequential

quadratic programming optimization [17], [18].

III. SOLVING THE SEEG-BASED DIPOLE INVERSION

This section explains the rationale of this paper by ad-

dressing two main questions that have arisen in our previous

studies: how the amount and the position of the sensors

affects the localization results and which is the necessary

number of time samples to be averaged.

A. Which set of sensors is needed?

In [19], the influence of the amount of sensors on the

localization results has been addressed in the context of scalp

EEG (where the electrodes are covering the scalp homo-

geneously). The conclusion was that increasing the amount

of sensors improves the localization. These results need be

reconsidered in the SEEG context, where the quantity of used

sensors seem not to be as preponderant as their particular

positioning with regard to the location of the source. Usually,

the SEEG setup consists in ten to fifteen electrodes, each

of them being composed of a dozen of contacts. Up to

200 measuring contacts are then available. The electrodes

insertion is done according to previous clinical hypothesis

and is subject to anatomical constraints.

In previous works, we give some basic thoughts on un-

desirable sensor configurations [8]. In summary, at least 6

measurements are needed to retrieve the 6 components of a

dipolar source. These 6 sensors have to fulfill simple geomet-

rical constraints: they cannot be collinear, making irrelevant

the use of a single electrode for localization purpose. Also,

they have to lie in different planes. These precautions might

be theoretically sufficient in ideal no-noise case. However,

the effect of signal to noise ratio (SNR) has to be taken in

considerations for realistic setup. In the independent white

noise case [8], [9], increasing the number of sensors was

shown to enhance the localization performance. Besides, we

also put forward the hypothesis that a reliable localization

was possible provided that a sensor is placed close enough

to the source, as the SNR decreases on far sensors. This

question is further explored in section IV-A on simulations.

B. How many time samples are needed?

In real application, a common technique to improve the

SNR is to average similar patterns (in general spikes or

evoked potentials) over several trials. The resulting position

stands for an averaged localization over the considered trials.

The effect of the averaging has been studied in [20] for

surface EEG dipole localization. It is shown that using a

large amount of time samples (from 10 up to 100) helps in

delineating the cortical epileptogenic lesion or the irritative

zone. If the activity of interest is not correlated with the

noise, a high SNR can indeed be obtained in the whole head

volume by averaging and the whole set of SEEG sensors

might be used with confidence. However, when the number

of available (and validated) time samples is low, the sensors

distant from the source are likely to exhibit critically low

SNR. Thus, as demonstrated in [9] on real epileptic spikes, it

might be more adequate to consider only a sufficient amount

of close sensors with high SNR. In the result section IV-A,

we deepen the analysis addressed in [9] by considering the
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cross effect of the chosen subset of sensors with the number

of time samples considered in the averaging.

IV. APPLICATION

A. Simulation

In order to evaluate the influence of the sensors to source

distance, we conducted the following simulations (under

Matlab): a standard head volume (without anatomical mal-

formation) has been chosen, in which the implantation of

12 SEEG electrodes has been simulated, 9 electrodes being

positioned in the right hemisphere and 3 electrodes in the

left one (this SEEG setup is inspired from common schemes

performed in temporal lobe epilepsy context). Each electrode

consists in 7 to 10 equally spaced contacts inside the brain.

The amount of sensors is of 112, 86 in the right hemisphere

and 26 in the left hemisphere. This simulated setup is given

on fig. 1. The potential on the sensors are simulated using a

realistic FEM lead-field matrix (see section II-A).

Fig. 1. Simulated setup: 112 SEEG contacts on 12 electrodes (green) and
50 dipoles (red)

Using this head setup, we successively placed dipolar

sources on a regular 3D grid having 9mm between points.

For computational reasons, we considered only a subset

of 50 dipoles placed within the segmented gray matter,

covering the whole brain volume. For each position, the three

orthogonal orientations (Ox: inion-nasion, Oy: right-left and

Oz: bottom-up) are considered. Thus 3 × 50 = 150 dipoles

configuration to be retrieved.

The presence of additive white noise has been simulated.

We propose two different noise level, computed from the

mean power of the whole 112 simulated potential on the

sensors, due to all the 150 simulated dipoles. More precisely,

σ1 = Mp/10 and σ2 = Mp/
√
2 (i.e., a noise attenuated by

20dB, respectively 3dB, with respect to Mp), where

Mp =
1

M ·D

D∑

d=1

M∑

m=1

|Vdm|, (3)

is the mean magnitude of the potentials Vdm (generated by

dipole d on electrode m) over the whole set of M = 112
sensors and the D = 3×50 dipoles. Roughly speaking, the σ1

noise level corresponds to a source visible almost all over the

brain (e.g. after averaging on several time instants), while the

σ2 noise models a source mainly visible on close electrodes

(e.g. few instants available for averaging). For each noise

level, we have computed 100 noise realizations.

We performed the localization using all the available

112 sensors, using the dipole fitting procedure described in

section II-B. On figure 2, the mean position error for each 50
dipoles (over the 3 orientations and 100 noise realizations)

is given as a function of their respective distance with the

closest sensor (dashed and doted curves). These results are

obtained in a particular head volume, with an OSM lead-field

based on a fixed fitted sphere, and with a particular SEEG

setup. For this reason, commenting each particular values

is useless, and we rather consider the trend of the position

error vs distances to sensors. These curves are represented

as bold lines computed using a cubic interpolation of the

data sets. For both noise levels, it can be observed that

when a sensor is close enough from the source (i.e. below

2.8cm for σ1 and 1.5cm for σ2), the error position remains

satisfactory (i.e. below 1cm), whatever its particular position

in the brain volume. For the dipoles that overpass these

distance limits, several reasons can be put forward to explain

the poor localization results, such as a critically low SNR, or

their proximity with the head frontier where the quality of

the used propagation model (OSM) can be questionable [9].

Still, white noise do not provide a realist modeling of the

additive physiological noise N (see eq.(2)). On the other

hand, simulating the above single dipole scheme with differ-

ent scenarios of correlated nuisance is not relevant, because

of the huge amount of possible configurations qualitatively

different from each other. Instead, we present in the next

section an experiment on real epileptic spikes, which we

believed will provide more convincing results. On these data,

we evaluate the cross influence of the subset of sensors with

the time averaging procedure.
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Fig. 2. Dipole localization error vs distance to the closest sensor. See text
for explanations.

B. Real epileptic spikes

We analyze in this study the SEEG recordings of a

28 year-old woman with drug-resistant left insulo-opercular

epilepsy. She gave her informed consent prior to partic-

ipation. Ten depth electrodes were implanted in the left

hemisphere, driven by the presurgical investigation. On the

depth electrode R’ (middle insula/central operculum), in-

terictal epileptic spikes were clearly identified by trained

neurophysiologists, with high signal to noise ratio and a

presumably focal localization, i.e., the absence of other co-

activated epileptic sources. Time averaging was performed

using the following procedure: the signal from the R’6
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contact (presenting highest amplitude spikes, thus assumed to

be the position of the source) was high-pass filtered. Twenty

spikes were then selected by thresholding and confirmed

by a trained electrophysiologist. For each peak, the time

instant of its highest value was retained. We then select, on

each sensor, k = [1, 2, 3, 5, 7, 10, 15, 19, 20] among the 20
instants and average their corresponding recorded potentials.

The localization is next performed using these averaged

potentials. In order to have reliable results, localization was

performed on 100 random combinations of k among 20 and

the localization errors were averaged (except of course for

k = 1 or k = 19, when only 20 combinations are possible,

and for the single combination for k = 20). These results

(localization error with respect to sensor R’6) are presented

figure 3.
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Fig. 3. Estimated position (distance to R’6) vs subset of sensors. Each curve
represents a given amount of averaged spikes (mean of 100 subaverages).

In order to evaluate the cross influence of the time av-

eraging with the used sensor configuration, we considered

10 different sensor subsets, depending on the distance of the

sensors to R’6 . The first configuration contains the 10 closest

sensors, those within a sphere of radius 1.5cm centered in

R’6. We then increase the radius by steps of 5mm to define

the next configurations, increasing thus the number of used

sensors, until including the whole set. Figure 3 shows the

distance of the estimated dipole to R’6 with respect to the

used sensor subsets, for each amount of averaged spikes

(after averaging over their respective 100 subaverages). The

results point out that a minimum amount of sensors with

good spatial disparity is needed. In this experiment, the

16 sensors situated below 2cm from R’6 belong to two

parallel electrodes, explaining the bad localization results.

It is straightforward to see that increasing the number of

spikes in the averaging indeed enhance the SNR, and thus the

localization accuracy. When enough spikes are considered,

(10 in this example), the localization is robust to the inclusion

of additional sensors in the subset. But when the number of

available spikes is low for averaging, the results point out

that an adequate sensor configuration close to the source has

to be chosen. In this particular experiment, a good trade-off

(localization error below 1cm) is obtained by averaging 5 to

10 spikes on a subset of 24 sensors within a radius of 2.5cm.

V. CONCLUSION

We evaluate the influence of the sensors subset and of the

averaging on the dipolar localization accuracy in the intra-

cerebral SEEG context. The results point out the need of

a selection strategy of the adequate SEEG sensors subset

to be considered in the localization process, depending on

the SNR and on the number of time points available for

averaging. Based on these conclusions, we plan to address

the multiple dipole localization problem in future work, by

iteratively determining for each dipole to localize an adequate

selection of surrounding sensors.
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