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Abstract— Radiation dose of X-ray Computed Tomography
(CT) imaging has raised a worldwide health concern. Therefore,
low-dose CT imaging has been of a huge interest in the last
decade. However, lowering the radiation dose degrades the
image quality by increasing the noise level, which may reduce
the diagnostic performance of the images. As a result, image
denoising is one of the fundamental tasks in low-dose CT
imaging. One of the state of art denoising methods, which has
been successfully used in this area, is Total Variation (TV)
denoising. Nevertheless, if the parameters of the TV denoising
are not optimally adjusted or the algorithm is not stopped in an
appropriate point, some of the small structures will be removed
by this method. Here, we provide a solution to this problem by
proposing a modified nonlocal TV method, called probabilistic
NLTV (PNLTV). Denoising performance of PNLTV is improved
by using better weights and an appropriate stopping criterion
based on statistics of image wavelet coefficients. Non-locality
allows the algorithm to preserve the image texture, which
combined with the proposed stopping criterion enables PNLTV
to keep fine details unchanged.

I. INTRODUCTION

CT utilization has increased dramatically over the last
two decades; principally due to the unsurpassed speed and
detail with which cross-sectional views of all soft tissues
and organs of the body can be obtained. CT results in a
relatively large radiation dose to patients compared to con-
ventional radiography and there is concern that this results
in increased risk of developing cancer [1], [2]. Therefore,
low-dose CT imaging is clinically desirable and has been
under investigation in the last decade. However, low-dose
CT images suffer from low signal-to-noise ratio and severe
artifacts, which affects the diagnostic performance and the
confidence of the physicians. This problem has been ad-
dressed by different techniques, which can be categorized
into three major classes: projection space denoising, image
space denoising, and iterative reconstruction (IR) including
compressed sensing based methods [3], [4], [5], [6], [7].
IR methods consider the imaging model and the statistical
properties of the CT images, which increases the image
quality and decreases the noise effect. However, the true IR
methods, which are usually known as model based IR [8],
are computationally intensive and time consuming, which
has hindered their wide clinical application to date. As a
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result, new denoising methods with better performance are
still under investigation.
The noise properties of the projection domain is well known.
This helps to design better denoising algorithms. However,
projection space denoising usually degrades the sharpness
of the images [9]. Therefore, in this paper we focus on the
image space denoising techniques. Our goal is to propose a
CT image denoising algorithm that eliminates the noise, but
keeps the image details unchanged.
Modeling of the noise in the image domain is not straight
forward; but it is usually assumed to be additive i.i.d Gaus-
sian [10]. This model helps the researchers to use the state
of the art denoising methods, such as dictionary learning and
sparse coding based algorithms [11], [12], multi-resolution
transform shrinkage/thresholding [13], and Total Variation
(TV) based denoising algorithms [14], [15], [16]. TV mini-
mization scheme, which is our focus in this paper, offers a
good combination of noise removal and feature preservation.
If the noisy image y is modeled by y = ȳ + n, in which
the original image ȳ is corrupted with additive zero mean
i.i.d Gaussian noise n with standard deviation of σn, TV
denoising uses the following optimization scheme to estimate
the noiseless image ŷ:

ŷ = argminu
λ

2
‖y−u‖2

2 +TV (u) (1)

in which λ is a positive scalar, ‖x‖2
2 = ∑i x2

i and TV (u) =∫
Ω
|Ou(x)|dx where O is the first order gradient of the image

y : Ω→ R. A general limitation in all denoising algorithms
including TV denoising approaches is losing or decreasing
the contrast of the small structures [17]. One straight forward
approach to achieve the best combination of noise removal
and feature preservation is to tune the parameter λ . If λ is
too large we may not remove enough noise. On the other
hand, if λ is too small it will remove too many features
and end up with a cartoon-like image [18]. Since tunning λ

is a tedious task, usually it is chosen in a reasonable range,
which combined with a good stopping criterion offers a good
trade off between noise removal performance and feature
preservation [16].
Non-Local denoising methods, introduced by Buades et al.
[19], propose another approach to address the feature preser-
vation issue in denoising problem. They exploit the repetitive
information present in most images and utilize a measure
of similarity between nearby image patches to estimate the
image structures. This allows the non-local algorithms to
preserve the image texture and fine detail. This idea is used
in [20] to improve the performance of TV denoising by
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proposing a non-local total variation (NLTV) algorithm.
In this paper, a modified NLTV, denoted by PNLM, is used
for low-dose CT image denoising. We modify NLTV by
utilizing better weights, introduced in [21], and improve
its performance by using a good stopping criterion. The
modified NLTV is describes in Section II and its performance
is tested in Section III.

II. PROBABILISTIC NON-LOCAL TOTAL VARIATION

Non-local total variation is formulated as follows [20]:

ŷ = argminu
λ

2
‖y−u‖2

2 +TVNL(u) (2)

where TVNL(u) =
∫

Ω×Ω
w(l,k)(u(l) − u(k))2dldk. The

weights w(l,k) are adopted from NLM methods [19]:

w(l,k) = e−
∫

Ω Ga(z)|u(l+z)−u(k+z)|2dz/h2
(3)

where
∫

Ω
Ga(z)|u(l+z)−u(k+z)|2dz is the distance between

patches located at l and k, Ga is a Gaussian function with
standard deviation a, and h is a positive constant which acts
as a scale parameter. Intuitively, the weighting function used
in NLM and NLTV gives a larger weight to a pixel with a
smaller patch difference. In [21] it has been shown that this
weighting function could be problematic by assigning very
different weights to equally probable patches. In addition,
similar to classic TV denoising, the algorithm should be
stopped in an appropriate point to keep the details un-
changed. These two problems are addressed in the proposed
method, as described in the following sections.

A. Improved Probabilistic Weighting Function

To address the weighting problem, we use the function
proposed in [21] for non-local mean denoising, to mod-
ify NLTV. As the additive noise is assumed to be i.i.d
and Gaussian, the difference between the patches Dl,k =

∑z dl+z,k+z with pixel distances dl,k = (y(l)− y(k))2/2σ2
n ,

can be statistically modeled by chi-square distribution. Using
this assumption, the weights are defined as w(l,k) = f (Dl,k)
where f (D) is as follows (for l 6= k) [21]:

f (D) = χ
2
ηk
(D/γk) =

(D/γk)
ηk/2−1 exp(−D/(2γk))

2ηk/2Γ(ηk/2)
(4)

with γk = var[Dl.k]/(2E[Dl,k]) and ηk = E[Dl,k]/γk, which
can be calculated numerically from the measured patch
distances. The center pixel is weighted by w(l, l) = χ2

|P|(|P|),
in which P is the patch size.

B. Stopping Criterion and Parameter Adjustment

TV denoising algorithm usually removes noise as well
as small structures from the images. Consequently, unless
the parameter λ is carefully calibrated the denoised image
is over-smoothed and the denoised image has cartoon-like
features. A potential solution is to stop the algorithm in
an appropriate point before the image gets very smooth.
Here, we propose a stopping criterion based on the statistical
properties of wavelet transform of the image. It is known
that the high frequency wavelet coefficients of a noiseless

image are very close to zero. In [22], this property is
used by introducing a parameter µ(t) = 1/|JP|∑ j∈JP|β j(t)|
which is the summation of absolute value of the wavelet
coefficients β j in high frequency subband JP in tth iteration,
with |JP| representing the number of wavelet coefficients
in that subband. This parameter should be very small in
a noiseless image. Using a preset threshold, when µ gets
smaller than that threshold the TV algorithm will be stopped.
Although this criterion can be very helpful, it introduces
an additional parameter that controls the stopping point and
as a result, controls the result. To solve this issue, we use
the idea used in Median-Absolute Deviation (MAD) [23].
MAD suggests that the median of absolute value of the high
frequency wavelet coefficients of a noiseless image should
be zero and the noise standard deviation of a noisy image
can be estimated with this value.
We calculate MAD at each iteration of the proposed scheme
shown in Algorithm 1. In this algorithm we start with a
relatively small λ , which over-smooths the image. In each
iteration the image is denoised with the modified NLTV, the
noisy image is partially added to this denoised image to
recover the removed structures, and λ is increased for the
next iteration. Consequently, MAD should be decreased in
consecutive iterations until an optimum point, in which the
MAD values start increasing. Therefore, PNLTV should be
stopped in this point. The split Bregman method proposed

Algorithm 1 Proposed iterative scheme for CT denoising.

Initialize: α ≥ 1, 0≤ β < 1, small λ , maxiter
u0← original image, u← original image
while iter < maxiter do,

[cA,cH,cV,cD] = dwt2(u)
MADiter = median(|cD|)
if MADiter−1 < MADiter then

Break;
end if
uiter = Split Bregman(u,λ )
λ ← λ ×α

u = β ×uiter +(1−β )u0

end while

in [20] is used to solve PNLV optimization scheme at each
iteration.

III. RESULTS

To evaluate the proposed algorithm, 200 low and ultra-low
dose chest CT images are denoised with the proposed method
(PNLTV) and a regular non-local TV denoising method.
Three axial slices of these patients are shown in Figures 1, 2,
and 3. Since we do not have access to high quality images,
the denoised images are evaluated qualitatively by comparing
the fine details which are removed or kept unchanged. In
addition, to have a quantitative measure of the denoising
performance, noise standard deviation (STD) of the low and
ultra-low dose images are compared with the corresponding
denoised images. Noise STD is measured from a smooth
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(A) (B) (C)

Fig. 1: Denoising of a low dose axial chest CT: (A) original image with noise STD of 64HU, (B) image denoised by NLTV,
noise STD is 20HU, and (C) image denoised by PNLTV, noise STD is 24HU.

(A) (B) (C)

Fig. 2: Denoising of a low dose axial chest CT: (A) original image with noise STD of 54HU, (B) image denoised by NLTV,
noise STD is 15HU, and (C) image denoised with PNLTV, noise STD is 15HU.

region in the images.
The low-dose protocol uses tube current × rotation time of
50mAs and tube voltage of 120kVp; and the ultra-low dose
protocol uses 25mAs and 120kVp. All the images are shown
with window-level/window-width of -550/1600.
Figures 1, 2, and 3 compare the CT images denoised with
PNLTV and the non-local TV denoising method proposed in
[20], denoted by NLTV. As it can be seen in these figures,
although none of the fine details and small textures are
removed by NLTV and there is no cartoon feeling in any of
the images processed by NLTV, in some cases the contrast of
very small structures are decreased. However, PNLTV keeps
all the details and the textures unchanged. The noise standard
deviation measurements show a 60±10% noise reduction by
PNLTV and a 65%±15% noise reduction with NLTV. This
shows that NLTV removes slightly more noise, but PNLTV
preserves the fine details more effectively. In addition, based
on the qualitative assessment of the images in our group, the

images denoised by PNLTV are clinically preferred.
In this section, the parameters in Algorithm 1 are as follows:
β = 0.6, α = 1.5, and maxiter = 50.

IV. CONCLUSION

A modified non-local total variation denoising method was
proposed in this paper to improve the contrast to noise ratio
of the low and ultra low dose CT images. Total variation
based methods often remove the image details, unless its
parameters are adjusted precisely. Two approaches were
combined here to overcome this problem: (1) using non-
local TV method, which improves the preservation of the
fine details by exploiting the similar patches in the image,
and (2) using an efficient stopping criterion, which uses
statistical properties of image wavelet coefficients, and stops
the algorithm before it is over smoothed by TV denoising.
In addition, non-local TV is improved by utilizing a proba-
bilistic weighting function, which is based on the statistical
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Fig. 3: Denoising of an ultra low dose axial chest CT: (A) original image with noise STD of 120HU, (B) image denoised
by NLTV, noise STD is 45HU, and (C) image denoised by PNLTV, noise STD is 47HU.

model of the patch distances. The simulation results show
that the proposed method, denoted by PNLTV, decreases the
noise by 60% without losing the image details.
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