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Abstract— Alzheimer’s disease (AD) is the most common 

progressive neurodegenerative disorder. Therefore, early 

detection and evaluation of prognosis of AD is an important 

issue in contemporary brain research. Magnetic Resonance 

Imaging (MRI) provides valuable diagnostic information about 

AD. In this work, brain tissue is extracted using phase-based 

level set method. Structure tensor analysis is used to visualize 

and quantify structural features of the brain from MRI. 

Further, quantitative measures are derived to classify different 

stages of AD. Normal and AD subjects were classified up to an 

accuracy of 88% using these features. It is observed that 

structural changes in brain can be characterized using this 

technique and therefore can be helpful in tracking the 

progression of AD and aid in classification between normal and 

AD subjects. 

 

I. INTRODUCTION 

Alzheimer Disease is a progressive brain disorder that 
gradually destroys memory and thinking skills and, 
eventually, the ability to carry out the simplest daily tasks. 
Definitive diagnosis of AD can be made only through 
histopathological examination of brain tissue for the 
presence of neurofibrillary tangles and amyloid plaques, 
usually at autopsy. Therefore, there is a need for reliable, 
objective and non-invasive methods for accurate diagnosis of 
AD during the lifetime of an individual [1]. 

Recent advancements in imaging techniques have aided 
in accurate diagnosis of AD and also in identifying its early 
preclinical stages. Magnetic Resonance Imaging has been the 
most widely used imaging modality in differentiating AD 
from other brain related pathologies. MRI based measures of 
atrophy are regarded as predictive biomarkers of the disease 
state and its progression [2].  

Manual measurements of sub-cortical structures for AD 
diagnosis from MRI are time consuming and do not capture 
the full pattern of atrophy. Clinical MRI scans can be made 
more useful in diagnosis of AD, by employing non-expert 
dependent, automated methods which perform equally well 
or better than clinical studies [3]. Recently it has been 
reported that ultrahigh field MR images can be helpful in the 
study of textural changes in subcortical structures of the 
brain [4].  
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It has been established that structure tensor features aid 
in unsupervised recognition of patterns in images [5]. It has 
also been widely used in object tracking and motion pattern 
analysis [6]. Lately, analysis of brain tissue of rat using 
structure tensor has proven that it helps in characterizing the 
micro structure of brain [7].  

The overall goal of this study is to characterize the 
orientation and structural anisotropy of brain by carrying out 
texture analysis on MR images. Subsequently, derive 
quantitative measures to classify different stages of AD. 
Structure tensor (ST) analysis is used as a texture analysis 
method on MRI to visualize and quantify the microstructures 
in brain. Using the metrics derived, the subjects were 
classified as AD, mild cognitive impairment (MCI) or 
normal controls. 

II. METHOD 

A. Data 

The images considered for performing the experiments 
are taken from an open source online database Open Access 
Series of Imaging Studies (OASIS) [8]. The MRI scans 
considered for this study are T1-weighted images of 
resolution 1.0 x 1.0 x 1.25 mm3. Each volume is the post-
registration average of 4 independently acquired 
magnetization prepared rapid gradient-echo (MP-RAGE) 
scans with repetition time: 9.7 ms, echo time: 4.0 ms, 
inversion time: 20 ms, delay time: 200 ms and flip angle: 
10°, obtained using a 1.5 T Siemens Vision scanner 
(Erlangen, Germany). All the subjects considered are right 
handed. The demographics of the subjects considered are 
given in Table 1.  

TABLE I.  DEMOGRAPHICS OF SUBJECTS CONSIDERED FOR 

STUDY 

Feature Normal  MCI  AD 

Number of subjects 92 67 45 

Age 67.90 ± 13.96 73.87 ± 8.96  76.77 ± 7.13 

Gender (M/F) 68/24 44/23 24/21 

Clinical Dementia 

Rating 

0 0.5 1 

Mini-mental state 

examination 

29.04 ± 1.16 25.87 ± 2.78 21.23 ± 3.28 

 

In order to ensure that voxels in different images refer to 
the same anatomical positions in the brain, the brain images 
are preprocessed. The MR images in the OASIS database are 
gain-field corrected and atlas-registered to the 1988 atlas 
space of Talairach and Tournoux [8].  

Detection of Alzheimer Disease in MR Images using Structure 

Tensor 

Archana M and Ramakrishnan S  

978-1-4244-7929-0/14/$26.00 ©2014 IEEE 1043



  

B. Data Analysis 

Structure tensor is an image texture analysis technique 
often used in image processing and computer vision. 
Structure tensor, J, of an image is a matrix derived from 
the image partial derivatives [9]. It is defined as, 
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Where fx and fy are the partial derivatives of image f(x,y) 
along the x and y directions respectively. It is defined for 
each pixel as a second order symmetric positive matrix. The 
weighted inner product between two images g and h is 
defined as 
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where, w(x,y) is a Gaussian weighting function with a 
specified width (σ) defining the local neighborhood. The 
eigenvalues λ1 and λ2 and the corresponding eigenvectors e1 
and e2 summarize the distribution of the gradient of the 
image within the window defined by w.  

If an eigenvalue is zero, the grey values in the direction 
of the corresponding eigenvector do not change. If one 
eigenvalue is zero and one greater than zero, it represents a 
simple neighborhood with ideal orientation. An isotropic 
structure is observed when λ1 = λ2. 

Local orientation, anisotropy and energy for each pixel 
can be calculated for the structure tensor matrix [10]. The 
direction of the largest Eigen vector of the tensor 
corresponds to the local predominant orientation θ given by 
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The anisotropy measure AI is given as 
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The anisotropy measure gives a relation between the 
length of the orientation vector to the length of the gradient 
vector. The values of anisotropy measure vary from 0, 
indicating isotropic to 1 indicating highly oriented structures.  

Energy is given by the trace of the structure tensor J [11] 
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Higher value of energy indicates highly oriented 
structures. Energy and anisotropy of the structure tensor can 
be used for structure analysis. Homogeneous areas in an 
image cause the energy to be small. In areas around edges, 
the structure tensor has a large energy as well as a large 
anisotropy, while corners result in a large energy but small 
anisotropy. In this work orientation, anisotropy, energy, λ1 
and λ2 are considered as features. The resulting values are 

visualized by combining in a composite image where hue, 
saturation and brightness (HSB) correspond to local 
orientation, coherency and the original image intensities. 

C. Classification methods 

Classification algorithms were explored to discriminate 
between the MRI of patients with varying degree of AD and 
their age matched control normals. Performance of different 
classifiers including naive Bayes, support vector machine, 
random forest and AdaBoost are studied. The performance 
of the classifiers was analyzed using standard parameters 
accuracy, specificity and sensitivity using ten 10-fold cross 
validation runs. 

Naïve Bayes classifier is a supervised probabilistic 
classifier based on Bayes’ theorem. This classifier assumes 
that given a class, its features are independent, i.e. the 
presence or absence of a feature is not related to the presence 
or absence of another feature [12]. 

Support Vector Machine (SVM) is a supervised, 
multivariate classification system. In this algorithm the 
feature vectors are linearly mapped to a higher dimension 
feature space. In this feature space, a linear separation 
surface called a hyperplane is created to separate the training 
data by maximizing the distance between the vectors of the 
two classes [13]. 

Random forest is a group of regression trees created by 
using bootstrap samples of the training data and random 
feature selection in tree generation. Prediction is made by 
combining the predictions of the group [14].  

AdaBoost, short for Adaptive Boosting, is a machine 
learning algorithm, is used in conjunction with many other 
learning algorithms to improve their performance. AdaBoost 
is adaptive in the sense that subsequent classifiers built are 
tweaked in favor of those instances misclassified by previous 
classifiers. Here, after each iteration the data is reweighted, 
where the weight of misclassified examples is increased, 
while the weight of the correctly labeled samples is 
decreased. In this work AdaBoost.M1 algorithm has been 
used [15]. 

III. RESULTS AND DISCUSSION  

Typical MRI images of different stages of AD are shown 
in the first column of Fig. 1. It can be seen that as AD 
progresses there is a visible decrease in the brain tissue 
structure. It can also be seen that due to this atrophy, the size 
of the ventricle increases as AD advances. 

The MR images are first subjected to phase-based level 
set algorithm to remove the non-cerebral tissues [16]. Fig. 1 
shows results of the segmentation for different patients at 
different level of AD using phase based level set method. 
The initial contour was defined on the image as shown in the 
first column of Fig. 1. The algorithm evolved the initialized 
contour over 80 iterations. At the end of all iterations a mask 
of the final zeroth level contour was created and multiplied 
with the original image, to give the segmented output. The 
advantage of local phase is that the measure is not sensitive 
to the magnitude of boundaries in the image, so it allows 
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segmentation along weak or strong boundaries between 
anatomical structures. The gradient diffusion process helps 
the contour to stick to the concave area of the region [16]. 

 
   Figure 1.   (a-c): initial contour, (d-f): final evolved contour and (g-i): 

segmented brain of a normal subject, MCI and AD patient 

The MRI scan after skull stripping is subjected to 
structure tensor analysis and features are extracted from all 
MR images. The features extracted are orientation, 
anisotropy index, energy, λ1 and λ2. The visualization of the 
resulting scalar values of the features is shown in Fig. 2. 

 

   Figure 2.  (a) Gradient-X (b) Gradient-Y (c) Energy (d) Orientations (e) 
Anisotropy index (f) Orientation, anisotropy and original 
image intensity combined as a HSB image 

Fig. 2(a) and (b) show the MRI convolved a Gaussian 
derivative filter along the x and y direction. Fig. 2(c) shows 
the representation of the energy feature of the MR image. 
From Fig. 2(d) it can be seen that there are jumps in the 
image representing orientation. When orientation, which is a 
cyclic quantity, is represented using grey scale, unnatural 
jumps between the smallest angle and the largest one 
dominate the appearance of the orientation image. For better 
visualization the orientation is combined with the anisotropy 
index and is represented as a color image.  Fig 2(f) shows the 
color representation of the structure tensor. As the structure 
tensor has three independent pieces of information, 
orientation angle, coherency and the image intensity, it fits 
well to the three degrees of freedom available to represent 
color in an image: luminance, hue, and saturation. Here, the 
squared magnitude of the gradient is mapped onto the 
intensity, the coherency measure is used as the saturation and 
the angle of the orientation vector is represented as the hue.  

Using features extracted from MRI after structure tensor 
analysis, different stages of AD are classified. The 
classification is performed by selecting the most 
discriminative features using Fischer discriminant ratio 
criterion.  

The five features extracted from the structure tensor 
analysis of the brain are used to classify the MR images into 
normal, MCI and AD. The performance of different 
classifiers for structure tensor features was analyzed. The 
results of classification between normal, MCI and AD 
subjects are presented in Tables 2 and 3.  

TABLE II.  CLASSIFICATION RESULTS USING SVM FOR NORMAL VS AD 

SUBJECTS 

 Accuracy (%) Sensitivity (%) Specificity (%) 

Orientation 76.1 71.34 72.43 

Anisotropy 

index 

65.76 62.54 59.85 

λ1 51.17 48.46 45.32 

λ2 87.39 85.56 83.45 

Energy 88.67 87.65 84.87 

 
TABLE III.  CLASSIFICATION RESULTS USING SVM FOR NORMAL VS   

MCI SUBJECTS AND MCI VS AD SUBJECTS 

 
Normal vs MCI 

subjects MCI vs AD subjects 

Feature 
Acc. 

(%) 

Sen. 

(%) 

Spec. 

(%) 

Acc. 

(%) 

Sen. 

(%) 

Spec. 

(%) 

Orientation 65.8 71.3 65.8 66.7 64.3 62.5 

Anisotropy 

index 
57.1 55.1 54.8 53.3 52.6 53.3 

λ1 47.3 47.1 46.3 43.6 42.5 40.5 

λ2 75.8 73.6 74.4 75.2 68.3 70.5 

Energy 80.3 76.4 78.3 79.1 74.7 76.7 

 

The accuracy obtained in classifying normal from AD 

subjects was higher when compared to that between MCI 

and AD or normal and MCI. This may be due to the increase 

in severity of the structural changes as the disease 

progresses. The energy feature gave the highest classification 

accuracy in all the cases. Due to AD related histological 

changes the homogeneity of the AD tissue increases. 

Homogeneous areas in an image cause the energy to be 

small. This difference in energy captured at the sites of 

neuronal loss, seems to be useful in differentiating normal 

from AD subjects.  The best classification results in all the 

cases were obtained with support vector machine as shown in 

Fig. 3.  

The sensitivity of energy feature was high at 87.65% 

when only normal and AD subjects were classified. When 

MCI subjects were compared with AD and normal subjects, 

the sensitivity values decreased to about 74.7%. This may be 

attributed to very less variation in the structural features 

during the progression from normal to MCI and from MCI to 

AD. The specificity also shows similar trend as sensitivity, 

with a maximum of 84.87% in classifying normal and AD 
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using SVM. The sensitivity is reduced to around 76% when 

MCI subjects are introduced in the classification.  

From Fig. 3 it can be seen that when compared to other 

classification techniques, the average predictive accuracy of 

SVM is slightly higher. Fig. 4 shows the performance of 

different classifiers in 3-class classification of normal, MCI 

and AD, using a combination of features. The accuracy 

obtained using SVM is comparatively higher.  

 

         
Figure 3.       Accuracy of different classifiers in classifying normal and AD 

subjects 

 
Figure 4.      Performance of different classifiers in classification of Normal, 

MCI and AD subjects using orientation and anisotropy values 

 
Figure 5.      Grey Level Co-occurrence Matrix features 

Grey Level Co-occurrence Matrix (GLCM) features have 

been the most commonly used texture features in brain 

studies. The GLCM features for the considered data set are 

shown in fig. 5. The advantage of ST over GLCM is that the 

Eigen vector decomposition of ST gives a higher consistent 

representation of orientation of small features [17]. 

Overall, it is observed that the structure tensor features 

are able to characterize the structural changes in the human 

brain tissue, and is in agreement with earlier reports on rat 

brain [7]. It helps track the progression of AD and aid in 

classification between normal, MCI and AD condition with 

acceptable accuracy.  

IV. CONCLUSION 

In this study structure tensor is used to identify different 

stages of AD from MR images. The brain tissue is extracted 

from MRI using phase-based level set method. It is observed 

that, leakage of contour at weak boundaries is reduced by 

using gradient diffusion process and phase information in 

segmentation. It is observed that structural changes in the 

brain could be captured using structure tensor analysis and 

quantitate measures obtained could classify normal and AD 

subjects up to an accuracy of 88.67% using SVM. 

Furthermore, the classification accuracy can be improved by 

considering ultrahigh field MR images as they provide better 

textural heterogeneity.   
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