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ABSTRACT

Wavelet-based statistical parametric mapping (WSPM) is an
extension of the classical approach in fMRI activation mapping that
combines wavelet processing with voxel-wise statistical testing.
We recently showed how WSPM, using graph wavelets tailored to
the full gray-matter (GM) structure of each individual’s brain, can
improve brain activity detection compared to using the classical
wavelets that are only suited for the Euclidian grid. However, in
order to perform analysis on a subject-invariant graph, canonical
graph wavelets should be designed in normalized brain space. We
here introduce an approach to define a fixed template graph of the
cerebellum, an essential component of the brain, using the SUIT
cerebellar template. We construct a corresponding set of canonical
cerebellar graph wavelets, and adopt them in the analysis of both
synthetic and real data. Compared to classical SPM, WSPM using
cerebellar graph wavelets shows superior type-I error control, an
empirical higher sensitivity on real data, as well as the potential to
capture subtle patterns of cerebellar activity.

Index Terms— Statistical testing, functional MRI, cerebellum,
spectral graph theory, graph wavelet transform, wavelet thresholding

1. INTRODUCTION

In many fMRI task-evoked studies, localized brain activity can
be detected by general linear model (GLM) fitting and statistical
hypothesis testing. Statistical parametric mapping (SPM) is the
classical method that requires Gaussian spatial smoothing of the
functional data as a linear means to noise reduction [1], which
comes at the cost of a loss in spatial specificity. On the other hand,
wavelet methods have the power to provide an optimised repre-
sentation of activation patterns through non-linear denoising. For
wavelet-based statistical parametric mapping (WSPM) framework,
in particular, the thresholding in the wavelet domain is considered
as a denoising step only, and is followed by statistical thresholding
of the reconstructed maps [2, 3].

Though WSPM using classical wavelets can circumvent SPM’s
drawback of a loss in specificity through wavelet processing, both
SPM and WSPM assume the functional data to lie within the
Euclidean space, whereas brain activity resides on a topologically
complicated domain, the cerebral cortex and the cerebellar grey
matter (GM). For that, we recently proposed an extension of WSPM
using graph wavelets that adapt to the structure of the brain GM
(sgWSPM) [4].

Although the cerebral cortex is quite similar between subjects
in terms of the main fissures, there remains a significant amount of
inter-subject variability in terms of the full topology. This hinders
the idea of creating a high resolution full brain template GM graph
representation from available full brain atlases such as the ICBM152
which is the most commonly used atlas and has been generated by
averaging 152 anatomical scans [5], as the intricate structure of neo-
cortex is largely lost when such a large group of subject is averaged.

However, the cerebellum has a unique geometry, where the
whole structure as well as the number and position of its fissures are
highly consistent across individuals. This fact has lead to the cre-
ation of cerebellar templates and atlases, the SUIT template being
one example [6], a well established high-resolution atlas template of
the human cerebellum and brain stem, defined at 1 mm cubic reso-
lution in MNI space, which has the unique feature of being spatially
unbiased; that is, the location of each cerebellar structure is equal to
that of each individual within the MNI space (compare Fig. 2(a) to
Fig. 3(d) as an example). The beauty of this template is that it pre-
serves the anatomical details of the cerebellar structures and fissures
through a nonlinear atlas-generation algorithm. The cerebellum is
an essential component of the brain that although accounts for only
10% of the total brain weight, contains more neurons than the rest of
the brain combined [7], and is responsible for monitoring and reg-
ulating motor behaviour, as well as having cognitive functions such
as learning and attention.

The contribution of the current paper is twofold: first, the de-
sign of a subject-invariant template cerebellar graph instead of us-
ing the anatomy of individual subject cerebella; second, modifica-
tion of the spectral support of a Meyer-like graph wavelet frame
to construct a set of canonical cerebellar graph wavelets adapted
to the template cerebellar graph. The graph is designed based on
SUIT’s cerebellum template [6]. Unlike our previously proposed
full brain subject-variant graph design [4], the unique idea here
is that the same graph template, and the corresponding wavelets,
can be adopted for analysing cerebellar fMRI data in different sub-
jects. By integrating the SUIT cerebellar template into sgWSPM,
we present a new subject-invariant approach for analysing cerebel-
lar fMRI data within the WSPM framework.

In the following, we will first give a brief recapitulation on
graphs and their eigenspace (Sec. 2.1), and then describe the design
of the template cerebellar graph (Sec. 2.2). We continue by review-
ing the spectral graph wavelet transform (Sec. 2.3 ), describing a
suitable cerebellar graph wavelet frame (Sec. 2.4), and recapping
WSPM (Sect. 2.5). We present results from an application to both
simulated and real cerebellar fMRI data and compare these to the
standard SPM and simple univariate testing (Sec. 3).
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2. CEREBELLAR GRAPH WAVELET-BASED ACTIVITY
DETECTION

2.1. Weighted Graphs and Their Spectrum

Let G = (V,E,W ) be an undirected graph consisting of a set of
Ng nodes V , and edges E with corresponding non-negative weights
W . Assuming the graph has no loops, it can be fully defined by its
adjacency matrix A as

Ai,j =

{
wi,j if (i, j) ∈ E,
0 otherwise.

(1)

where wi,j denotes the weight of the edge between nodes i and j.
The degree matrix and normalized Laplacian matrix are given by
Di,i =

∑
j Ai,j and L = I − D−1/2AD−1/2, respectively. As we

will see in Sec. 2.3, spectral graph wavelets are designed using the
set of orthonormal Laplacian eigenvectors {χl} that satisfy Lχl =
λlχl. The graph spectrum is defined by the corresponding set of
non-negative eigenvalues {λl}.

2.2. Cerebellar Graph Design

We use the SUIT template and atlas as our reference in defining a
cerebellar graph. The graph nodes are defined through a two-step
thresholding scheme, first on the cerebellar GM probabilities of the
SUIT template, followed by a second thresholding phase on the in-
terpolated values of a downsampled version. The detailed steps are
as follows:

• First, we segmented the 1mm cubic resolution SUIT cerebellar
template (Fig. 2(a)) to extract the GM, suitGM (Fig. 2(b)), using
the unified segmentation algorithm [8] that leads to a probability
map indicating the probability of each voxels being GM, white
matter (WM), or cerebrospinal fluid (CSF). Next, we thresholded
suitGM and only kept voxels for which the GM probability was
higher than that of WM or CSF, resulting in mask G1.

• Second, in order to remove the brain stem and only keep the cere-
bellar structure in a non-subjective way, we made use of SUIT’s
probabilistic atlas of the 34 cerebellar lobules [9], and masked
out any voxel that did not lie within this atlas. Moreover, minute
isolated regions that resulted from the segmentation phase were
also removed to achieve a single connected mask G2. We denote
the GM probability of each voxel i within suitGM by vi, and its
membership with respect to G2 by a logical variable vi.

• Next, we created a symmetric downsampled version of G2 using a
nearest neighbour interpolation scheme combined with the second
thresholding step as

vdn =

{
1
N3

∑N3

m=1 vmvm if 1
N3

∑N3

m=1 vmvm ≥ 0.5,
0 otherwise

(2)

where N denotes the downsampling factor, m runs over the local
neighbourhood voxels within the high resolution volume, vdn is
the GM probability of the nth downsampled voxel. We denote
the resulting mask with G, and treat the remaining voxels within
G as graph nodes.
A downsampled version of G2 was required due to its incompara-
ble and unnecessary high 1 mm cubic MNI resolution compared
to that of typical functional data (2− 3 mm cubic). Also, instead
of initially downsampling the SUIT template and proceeding with
constructing the mask, we found it beneficial to first make use
of the finer anatomical detail within the original high resolution

Fig. 2: An image of a coronal slice of (a) SUIT cerebellum template and
(b) the corresponding extracted GM.

SUIT template; that is, we derived the mask based on the more
accurate GM probabilities and then did a linear downsampling
within the MNI space in the final stage, leading to a more accu-
rate downsampled GM mask and GM probabilities.

• Finally, we created a weighted graph by computing the three-
dimensional connections between adjacent voxels in G based on
the 26-connected neighborhood. The weight of the edge between
vertices i and j was defined as wi,j = (PiPj)

5, where Pi and Pj
correspond to the GM probability of the vertices i and j, respec-
tively. This weighting is empirical and heavily penalizes connec-
tions between vertices with low GM probability, and enhances the
diffusion of the wavelets along regions of GM with high proba-
bility [4]. We also created a binary graph version, by binarizing
the remaining voxels in G, and only computing the connections.

2.3. Spectral Graph Wavelet Transform

We give a short overview of spectral graph wavelets and refer to
[10] for further details. Classical wavelets are formed through shift-
ing and scaling of a mother wavelet ψ within the Euclidian space.
However, constructing wavelets that diffuse on arbitrary domains
such as graphs is not straightforward, for which [10] has appealed to
the Fourier domain. The Fourier transform of the classical continuos
wavelet ψs,a(x) = 1

s
ψ
(
x−a
s

)
, at scale s and location a, is given by

ψs,a(x) = 1
2π

∫∞
−∞ ψ̂(sω)e−jωaejωxdω. We see that scaling ψ by

1/s corresponds to scaling ψ̂ by s, and the wavelets can be interop-
erated as scaled bandpass filters.

By observing that the complex exponentials, ejwx, are the basis
functions of the Fourier transform, and are themselves eigenvectors
of the 1-D Laplacian operator, we can in analogy, interpret the the
eigenvectors of the graph Laplacian as defining the graph spectrum,
the analogue of the Fourier domain of signals within Euclidian space
[11]. Thus, the graph Fourier transform of a graph signal f is given
by f̂ = 〈f |χ`〉, where 〈 | 〉 denotes the inner product. The spectral
graph wavelets at J scales localized on each graph node n are then
obtained as

ψj,n(m) =

Ng−1∑
l=0

g(tjλl)χ
∗
l (n)χl(m), j = 1, . . . J, (3)

where tj denotes the wavelet scale. The corresponding wavelet co-
efficients are given by wψ(j, n) = 〈ψj,n|f〉. A scaling function
which captures the lowpass components can also be defined using a
suitable kernel φ in a similar fashion.

2.4. Wavelet Frame Adapted to the Cerebellum

We used the normalized graph Laplacian matrix L, for which the
spectrum is confined to eigenvalues in the range [0,2), and a modi-
fied version of the Meyer-like tight frame design, which conserves
energy in the wavelet domain [12]. By empirical testing, we found
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Fig. 1: Meyer-like windowing functions g(tjλ) at the lower end of the graph spectrum and a realisation of their corresponding wavelets overlaid on the
segmented GM of the SUIT template. Scaling function and wavelet supports as used (a) in [4] for full brain graphs, and (b) that used for the proposed template
cerebellar graph. (c)-(d) An illustration of the cerebellar wavelets corresponding to the windowing functions in (a) and (b), respectively (color-coded). Note
that the wavelets diffuse within 3 dimensional space but we here only illustrate an image of a coronal slice.

that the finest scales of the graph wavelets did not significantly con-
tribute to detection performance, and therefore, we adapted the win-
dowing functions by adjusting the scaling parameter tj . Compared
to our previous wavelet frame adapted to single subject full brain [4]
(see Fig. 1(a)), the spectral support of the scaling function and first
wavelet kernel was confined by a factor of about 2 (see Fig. 1(b)).
This is an interesting observation and can be linked to the lower ex-
tent of geometrical detail of the cerebellum template compared to
that of the domain defined by the GM of the full brain, which in-
cludes the convoluted structure of the cerebral cortex.

Figs. 1(c)-(d) depict a realisation of the scaling function and
wavelets in the spatial domain, overlaid on suitGM. We observe that
for both the scaling function and wavelets, the scale of the kernels
in Figs. 1(d) is coarser than the ones in Figs. 1(c), which is in accor-
dance with the definition of the windowing functions.

Also, we notice the difference in the size of the cerebellar graph
compared to that of a full brain one (15 k vs more than 40 k), which
in itself can effect spectral properties. The main challenge is to
design wavelet frames that adapt to a graphs structure, or in other
words, its spectrum; however, a second inherent challenge is the es-
timation and study of the full spectrum of such large graphs, which
is computationally restrictive.

2.5. Wavelet-Based SPM

We give a brief overview of the WSPM framework and refer to [2, 3]
for details. In single-subject WSPM, a wavelet transform is com-
puted for each functional volume and a GLM is fitted to the time
evolution of each wavelet coefficient, whereas within the normal
SPM the model fitting is done on the temporal behaviour of the vox-
els themselves. Using the estimated effect sizes and residual errors,
wavelet domain t-values are constructed and then thresholded. The
wavelet domain thresholding (by τw) is considered as a denoising
step only, and is followed by spatial domain statistical thresholding
(by τs) of the reconstructed maps such that the null-hypothesis re-
jection probability is properly controlled; the optimal combination
of τw and τs is calculated by minimizing the worst-case error be-
tween the unprocessed and the detected parameter map [2]. Using
the inverse wavelet transform the reconstructed processed parameter
map after bias reduction, ũ, is computed as

ũ = min

(∑
k

u[k]ψk,
∑
k

H(|t[k]| − τw)u[k]ψk

)
(4)

where the index k runs over all scales of the decomposition and
the functions ψk corresponds to the associated scaled, shifted, and
dilated versions of the scaling function or of the wavelet, u are the
wavelet coefficients, t are the wavelet domain t-values and H is the

Heaviside step function [2]. Finally, by thresholding the constructed
spatial domain t-values by τs, the final parameter map of detected
activations can be computed as ū = H

(
ũ∑

k σ[k]|ψk|
− τs

)
ũ, where

σ is the standard deviations of the error estimates.

3. EXPERIMENTAL RESULTS

3.1. Synthetic Data

A synthetic cerebellar dataset was created in a way similar to that
in [4] but here using the SUIT template instead of an individual
subject’s anatomical scan, see Fig. 3(a). Table 1 summarizes the
activation mapping performance using simple univariate testing (no
smoothing), SPM (isotropic Gaussian smoothing, FWHM = 6 mm)
and sgWSPM (no smoothing). For sgWSPM, we present results
using three different settings. SPM shows the highest sensitivity.
This is expected due to the initial smoothing phase, but comes at
the cost of detecting a large number of false positives (type-I error),
see Fig. 3(b). On the other hand, sgWSPM on the non-smoothed
data using spectral support design as in Fig. 1(b), leads to a high
sensitivity with well-controlled specificity resulting in detected pat-
terns unvailing the fine detail structure of the ground truth activity
such as that in the right superior region, see Fig. 3(c). Compared to
simple univariate testing, where we use the original non-smoothed
data as in the wavelet approach but without nonlinear wavelet de-
noising, we see the strength of the wavelet framework in taking into
account spatial correlations. Although the weighted approach leads
a slightly pronounced sensitivity (86.4 vs 83.2) with a small 0.6%
drop in specificity, this enhancement is less significant as that ob-
served for the single subject full brain graph [4] (results not shown).
This is due to the fact that there is more certainty in the GM prob-
abilities in the SUIT atlas as to that of the full brain, and thus the
effect of weighting the edges becomes less pronounced as the adja-
cency matrix is closer to the binary one.

Method uni-
variate

SPM
sgWSPM

Fig. 1a Fig. 1b
binary weighted

Detections 88 5714 2704 3386 3564
Sensitivity (%) 2.5 93.4 70.2 83.2 86.4
Specificity (%) 100 78 97.5 95.5 94.9

Table 1: Summary of the results obtained by simple univariate testing, SPM,
and sgWSPM for the synthetic data set. sgWSPM results are presented for
both wavelet spectral support options as in Fig. 1, and also the weighted
graph option for the latter design (i.e, Fig. 1b) .
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Fig. 3: (a) Ground truth for synthetic dataset. Detected parameter maps using
(b) SPM and (c) sgWSPM. Real dataset - (d) subject’s cerebellum aligned to
SUIT space, detected parameter maps using (e) SPM, and (f) sgWSPM. All
parameters maps thresholded for a p < 0.05 FWE corrected, and overlaid
on SUIT template.

3.2. Real Data
We used a single subject data from a dataset acquired on a 3T
Siemens Allegra scanner while subjects performed an event-related
Eriksen Flanker task [13]. The task consisted of indicating the di-
rection of a central arrow, which was surrounded by arrows of the
same (congruent) or opposite direction (incongruent trial). Note that
using the proposed template cerebellar graph, we are required to nor-
malize the functional data to the SUIT space, by first extracting and
mapping the subject’s cerebellum into SUIT space, and using the
resulting transformation to map the functional data.

Figs. 3(e)-(f) show the activations during incongruent trials de-
tected by SPM (isotropic Gaussian smoothing, FWHM = 6 mm)
and sgWSPM, respectively (binary graph, with wavelet supports as
in Fig. 1(b)). As in the synthetic case, SPM shows smooth maps,
but in this case we also observe that the detected maps within the
cerebellum leak into higher cerebral regions of the visual cortex and
vice versa. We did not mask out these detections, to show the ef-
fect of the pre-smoothing required for SPM. On the other hand, in
contrary to the synthetic dataset, sgWSPM shows a higher empiri-
cal sensitivity, as evidenced not only within the superior cerebellar
structures but also the additional structure detected within the right
inferior region. Moreover, sgWSPM maps show greater geometri-
cal detail. The total number of detections using SPM and sgWSPM
is 10486 and 6171, respectively, where only 6524 of SPM detec-

tions lie within the defined region by SUIT template, and only 3534
overlap with cerebellar GM of probability greater than 50%. Em-
pirically, detections outside the latter region are most likely false
positives as the BOLD signal is only expected within GM [14].

4. CONCLUSION
We have further extended the framework of anatomically-adapted
wavelets for fMRI statistical analysis by constructing a template
cerebellar graph and designing canonical cerebellar graph wavelets.
The cerebellum is well suited for this approach due to its limited
inter-subject variability. Compared to conventional SPM analysis,
the application of the cerebellar wavelets within the WSPM frame-
work showed superior performance in terms of type-I error control
and sensitivity to detect subtle activity patterns, both for synthetic
and real data. Our results suggest that the proposed cerebellar graph
and wavelets can now be exploited to fMRI analysis at the group
level, either for the cerebellum alone or the whole brain, in the near
future.
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