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Abstract— Multivariate Pattern Analysis (MVPA) is
frequently used to decode cognitive states from brain
activities in fMRI study. Due to the discrepancy between
sample and feature size, MVPA methods are suffered
from the overfitting problem. This paper addresses
this issue by introducing sparse modelling along with
its advanced decoding method, Compressive Sensing
(CS). As brain voxels have highly correlated in spa-
tial domain, the prerequisite of CS methods are not
well satisfied. We therefore propose a novel MVPA
method to integrate linear Sparse Bayesian Learning
(i.e. Bayesian Compressive Sensing) with random sub-
space method. Benefiting from the random subspace
method, spatial correlation and feature-to-sample ratio
are largely reduced. The experimental results from
a real fMRI dataset demonstrate that our method
has distinct prediction power compared to three other
popular MVPA methods, and the detected relevant
voxels are located in informative brain areas.

I. INTRODUCTION

Functional MRI (fMRI) is a neuroimaging tech-
nique to investigate the relationship between brain
regions with specific cognitive functions by mea-
suring changes in brain blood flow signal (BOLD).
Conventional fMRI analyses focus on investigating
the interpretation of neural activities with univariate
analysis, such as General Linear Model (GLM) [1].
The univariate analysis methods work on isolated
voxels and they determine active brain regions with
the most statistically significant voxels in response to
a cognitive task.

In contrast to univariate analyses, Multivariate
Pattern Analysis (MVPA) of fMRI attempts to in-
formatively decode patterns of brain activities [2].
By measuring multi-voxels simultaneously, MVPA is
more sensitive and informative to the brain activi-
ties and robust to noises. Recent advanced MVPA
methods [3], [4], [5] employ sparse modelling and
have shown distinct advantages: 1) they can directly
work on the whole brain without introducing feature
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selection methods beforehand, 2) they only use a
small subset of input voxels for prediction so that
overfitting problem can be eliminated, 3) when linear
sparse model is used, neural activities can be inter-
preted by studying the selected voxels. On the other
hand, random subspace method has also be proven
to alleviate the overfitting problem [6].

In this paper, we propose a robust sparse modelling
method for fMRI analysis; it is implemented by
incorporating linear Sparse Bayesian Learning (SBL)
with the random subspace method. We show that
with the introduction of random subspace method,
the performance of linear SBL will be improved
based on the following facts: 1. the correlation among
features in a subspace can be tremendously reduced
by random selection so that better conditioned matrix
can be produced; 2. discrepancy between sample size
and feature size in a subspace is highly reduced. As a
consequence, linear SBL can provide robust predic-
tors for subspaces, and a final strong predictor can
be constructed via an aggregating process. Moreover,
benefiting from the linear sparse model, prediction
maps are provided so that interpretation of neural
activities can be investigated.

II. LINEAR SPARSE MODELLING
The results of fMRI analysis show that active brain

regions responding to a cognitive task are just a small
part of the entire investigated area (e.g. whole brain).
Motivated by this observation, the decoding problem
can be formalized by linear sparse modelling. This
gives:

y = Xw, (1)

where X ∈ Rn×p composes of n observations and
p features corresponding to a response vector y ∈
Rn×1, and the non-zero elements of w ∈ Rp×1

indicate their corresponding voxels are relevant to
the cognitive state y. The total number of relevant
voxels, k, should be far less than the total number
of voxels, that is k � p. As in fMRI study, n � p,
estimation of w is ill posed.

Compressive Sensing (CS) technique [7] offers an
opportunity for solving this problem. However, the
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spatial correlation of voxels leads to poor conditioned
design matrix. When several columns of the design
matrix X are highly correlated, the estimation of
their corresponding non-zero elements is difficult that
only part of them may be detected [5]. To address
this problem, the elastic net method is proposed
to provide a relaxation on poor conditioned matrix
where the correlated voxels are highly grouped [4].
Another alternative approach, randomized ward lasso
[5], is developed to reduce the spatial correlation by
grouping correlated voxels together and using the
average value of each cluster to construct design
matrix. This method is focused on the relevant voxel
recovery rather than the prediction power of the linear
model. Moreover, the above methods involve penalty
parameters that must be fixed beforehand using a
hold-out method such as cross-validation.

III. METHODS

In this work, we integrate Sparse Bayesian Learn-
ing (SBL) [8] with the random subspace method
to construct a robust prediction model composed of
multiple SBL predictors. SBL is adopted to build the
linear sparse model. The SBL algorithm has been
demonstrated that it can empirically provide a useful
sparse solution even when the design matrix is in
poor condition and no penalty parameters need to be
defined via cross-validation.

Random subspace (RS) method aims to generate
multiple predictors, from which a strong aggregated
predictor can be produced. It starts with generat-
ing L subspaces, each of which contains M vox-
els randomly sampled (with replacement) from the
whole input space. Then, a sparse linear model is
constructed in each subspace. The relevant voxels
in subspaces can be more easily detected by SBL.
That is because, in each subspace, both the relevant-
to-sample ratio and the spatial correlation are re-
duced due to the decreased size of relevant voxels
and random sampling process respectively. However,
even when the relevant features can be correctly
detected, the majority of predictors are weak as each
of them only involves partial information. Therefore,
an aggregating process is employed to produce a
strong predictor involving all detected relevant fea-
tures. Here, we use a common aggregating method,
majority voting, which counts the largest number of
predicted results that agree with each other. The final
result benefits from the random sampling process
that it can highly reduce the probability of involving
biased voters.

Fig. 1: The framework of RS-SBL in training and
prediction phases.

Figure 1 shows the framework of our method,
random subspace SBL with linear model (RS-SBL),
by illustrating how our method works in both training
and prediction phases. In the training process, the RS-
SBL method generates a set of prediction models
along with their selected features from a training
dataset. In the prediction process, the prediction
models learned from training process are applied
to a prediction dataset, where the final prediction
result is obtained by majority voting. Note that both
training and prediction datasets are constructed with
preprocessed whole brain fMRI images.

IV. RESULTS

The fMRI data used in our experiments were
provided by Human Connectome Project (HCP) [9]
(see reference for more details). In our work, we
adopted our algorithm to analyse the relationship
processing task that was conducted to study the active
brain regions for processing internally and externally
generated information. Under the relationship pro-
cessing experiment, we focus on three classification
tasks within individual subjects to check whether the
subject: 1. did relation processing or stayed relaxed,
2. did match processing or stayed relaxed, 3. did
relation processing or match processing. We per-
formed the experiments on the preprocessed whole
brain fMRI data of a group of 10 unrelated sub-
jects selected from 77 candidates. For each subject,
we performed training process on one session and
prediction on the other. Each session consisted of
232 samples and each of the three respond vectors
(relation, match, and rest) had approximately one
third of the samples. As a result, there were about
155 training samples for each classification task. As
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the total number of voxels ( ≈ 228, 000) was far more
than the number of samples, training classification
models was a underdetermined problem.

In these experiments, we focus on constructing
binary classifiers for cognitive task using the classifi-
cation algorithm of the SBL, SBC [8]. We compared
the performance of our proposed algorithm, RS-SBC,
to three other MVPA methods:

• Sparse Bayesian Classification with linear
model (SBC). This is the fundamental classi-
fication algorithm of our method, where the
design matrix is constructed by the features in
voxel space other than any projected spaces (e.g.
projected using linear kernel function).

• Support Vector Machine with linear kernel
(SVM-Lin). SVM has been the most popular
classifier for fMRI data analysis, and the most
useful version is the one with linear kernel [6].
The C parameter of linear kernel is optimized
by 10-fold cross-validation in our experiment.

• Sparse Bayesian Classification with linear ker-
nel (SBC-Lin). SBC has been demonstrated hav-
ing similar (or even better) classification perfor-
mance to SVM on some applications (e.g. hy-
perspectral image classification [10]). However,
no comparison has been made on fMRI analysis.
We constructed this competitor using SBC with
linear kernel to make it comparable to the above
SVM classification method.

All the competitors and our proposed algorithm
were applied on whole brain fMRI images rather
than a subset of voxels selected with a feature selec-
tion algorithm. The classification performance was
evaluated by classification accuracy. We set (L =
100,M = 10%p) for both Relation vs. Rest and
Match vs. Rest and (L = 30,M = 33%p) for Rela-
tion vs. Match. Due to the randomness of sampling,
the results were averaged over 50 experiments.

A. Classification Accuracy

Figure 2 shows the average classification accura-
cies across 10 subjects using four different classifiers.
Each of the three classification tasks contained two
experiments: using session 1 to predict session 2 and
vice versa. The results demonstrate that our proposed
method has the highest classification accuracy, while
SVM has the worst performance as it cannot handle
overfitting problem with huge number of voxels.

SBC-Lin performs better than SBC in the first two
classification tasks but worse in the last one. For
the first two tasks, although the number of relevant
voxels is small compared to the total number of input

(a) Relation vs. Rest

(b) Match vs. Rest

(c) Relation vs. Match

Fig. 2: Classification accuracies across 10 subjects
with four different classifiers: SVM-Lin, SBC-Lin,
SBC and RS-SBC.

voxels, compressive sensing theory cannot detect all
relevant ones with such small sample size. The num-
ber of relevant voxels found by SBC is only several
dozen which was extremely sparse compared to the
significant voxels found by GLM (around 1000),
leading to inaccurate estimation. RS-SBC increases
estimation accuracy by reducing the number of input
voxels in each subspace. As the difference between
the relation and match tasks only lies in the internal
information generation region, the important voxels
is much sparser in the last task. Samples are relatively
sufficient to find the most important voxels using
SBC. Therefore SBC outweight the performance of
SBC-Lin.

Compared to SBC, RS-SBC can further increase
classification accuracy by detecting more relevant
voxels. On average, the classification accuracy is
improved 15% over the SBC method, and 3% better
than SBC-Lin method. The number of relevant voxels
determined by RS-SBC is larger than SBC but much
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smaller than SBC-Lin. Approximately 1500 and 300
voxels are found for the first two and last tasks. Along
with the highest average accuracy, our method can
construct the most stable classifier with the smallest
variance across all the cases.

B. Prediction Map

We illustrate some examples of ’individual’ predic-
tion maps obtained by our method and active maps
generated by GLM analysis. The GLM analysis,
implemented by SPM first-level analysis [11], returns
the active maps containing voxels with FWE ≤ 0.05
(empirical value). Our method produces prediction
maps by selecting voxels that are supposed to be
relevant on average across 50 repeated experiments.
The maps of both methods are created by registering
relevant voxels to the subject’s T1w structural image.
Figure 3 shows an example of the prediction maps of

(a) Active Map

(b) Prediction Map

Fig. 3: An example of ’individual’ prediction map
vs. active map for Relation vs. Match task.

Relation vs. Match. We can see that relevant voxels
detected by different methods are not identical, but
similar brain regions are clearly outlined. The located
brain regions with the relevant voxels are consistent
with the findings of the work in [12] that the task ac-
tivates both Rostrolateral Prefrontal Cortex (RLPFC)
and primary visual cortex.

V. CONCLUSIONS

This paper proposes the robust sparse modelling
method (RS-SBL) to generate brain behaviour pre-
dictors and prediction maps from whole brain fMRI
images. Our work is the first attempt to integrate

random subspace method with SBL. We have shown
that the performance of our method outweight three
other methods using the dataset provided by HCP.
Among those methods, SVM-Lin and SBC-Lin in-
volve feature space transformation so that all voxels
are used for classification. Hence, relevant voxels
are difficult to be selected and the prediction models
tend to overfit the training data. SBC, on the other
hand, directly detect relevant voxels but the resulted
prediction map is extremely sparse. Our method, ben-
efiting from the implementation of random subspace,
is able to provide meaningful prediction maps with
the strongest prediction power.
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