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Abstract— Manifold learning algorithms are proposed to be
used in image processing based on their ability in preserving
data structures while reducing the dimension and the exposure
of data structure in lower dimension. Multi-modal images have
the same structure and can be registered together as mono-
modal images if only structural information is shown. As a
result, manifold learning is able to transform multi-modal im-
ages to mono-modal ones and subsequently do the registration
using mono-modal methods. Based on this application, in this
paper novel similarity measures are proposed for multi-modal
images in which Laplacian eigenmaps are employed as manifold
learning algorithm and are tested against rigid registration of
PET/MR images. Results show the feasibility of using manifold
learning as a way of calculating the similarity between multi-
modal images.
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I. INTRODUCTION

Multimodal image registration- defined as a spatial map
between images- has a broad use in medical applications
to obtain insights regarding accurate comparison between
images like evaluating the evolution of a disease in a patient
or an organ changes over different times [1] or with different
angels [2] and also the information fusion obtained by
various imaging modalities [3]. Therefore, every point in one
image has a corresponding point on other images for their
alignment. Moreover, registration algorithms can be divided
into two categories by the type of information used [1]: fea-
ture based methods in which three essential steps as feature
extraction, correspondence establishment and transformation
estimation are fulfilled. Another group includes intensity
based methods that use the intensities of the voxels and
define a measure of similarity between different images and
the registration parameters are optimized when maximizing
the respective measure [4]. Consequently, some statistical
measures like mutual information [5] have become popular
which assumes that two pixels having the same intensity in
the first image also have the same intensity in the second
image. In contrary, feature based methods are found to be
robust to intensity variations for key point extraction and
description [6]. However, the multimodal image registration
is affected by more substantial intensity variations that make
such approaches not applicable enough [2]. Recently in [7],
manifold learning was employed in order to extract structural
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information out of multi-modal images and then get use
of the obtained information in registration. In other words,
manifold learning algorithms are able to reveal structures
by processing data in a high dimensional space and present
it in a lower dimensionality which can reveal structural
similarity between multimodal images. In this research, some
novel similarity measures based on manifold learning of
both reference and float images are proposed in which the
principals of Laplacian eigenmaps algorithm [8] is used.
At first, the difference of Laplacian matrix of two images
are introduced as a similarity measure and then in another
definition the difference of manifold learning output under an
appropriate constraint is presented as similarity measure. In
the latter approach two different constraints and problems are
defined to find the similarity measure. The first problem tries
to compute one image manifold subject to being as similar
as possible to the other image and the second one calculates
both image manifolds simultaneously subjected to finding
manifolds with minimum differences in lower dimension.
Finally the respective similarity measures are analyzed for
the rigid registration of multi-modal brain MR and PET
images.
Subsequently, in the following sections, common manifold
learning techniques and their applications in image process-
ing are briefly reviewed. Then a technique to transform
multi-modal images to mono-modal ones is explained and
some novel similarity measures based on manifold learning
in multi-modal images are introduced. In the third section,
the proposed transformation is tested and similarity measures
are validated by using them in a rigid registration process
of PET/MR images. Putting all together, the conclusion is
presented.

II. BACKGROUND

Manifold learning techniques have become popular after
the introduction of Isomap [9] and LLE [10] in 2000.
Since then other learning approaches were introduced like
Laplacian [8] and Hessian eigenmaps [11] and each tries
to represent high dimension data structures in lower dimen-
sions. Among these methods, Laplacian eigenmaps approach
has attracted researchers attention more because of the best
structure preservation with lower computational complex-
ity [12]. Manifold learning in image registration can be
categorized into two groups. In the first group, manifold
learning is used in order to find correspondence between
samples of two image sets. These methods were initially
become known by Ham [13] and then a semi-supervised
approach was introduced by Mahadevan and Wang [14].
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Later Zha et al. [15] proposed an unsupervised method for
image matching. This group of algorithms are known as
Mani f old Alignment Algorithms.
The second group is related to two image alignment by
means of manifold learning. Among the methods suggested,
Navab et al. [7] declared that manifold learning is capable
of detecting structures and so gives the structural similarity
between images taken from different modalities. They pre-
sented their solution for the multimodal image registration.
In the proposed method, each pixel of the image is converted
to 225-Dimensional vector based on a 15× 15 neighbor-
ing region around that pixel and then the respective data
are transformed into 1-Dimensional data using Laplacian
eigenmaps algorithm which has got the least computational
expense compared to other manifold learning algorithms. For
N data this computational complexity is O(N2). Afterward,
images are reconstructed after aligning the created manifolds
that is the multi-modal images are converted to mono-
modal images. After this step, common mono-modal image
registration algorithms can be implemented.

III. METHOD

As mentioned, manifold learning has got various ap-
plications in multi-modal image processing and the main
reason lies in the existence of similar structural information
from different modalities and subsequently manifold learning
capability in detecting such structures. Thus, similar results
are expected from manifold learning of two images with
similar structural information. In the following a technique
to transform multi-modal images to mono-modal images is
explained and then some novel similarity measures based on
manifold learning in multi modal images are presented.

A. Multi-modal to mono-modal transformation

Major disadvantages of transforming multi-modal to
mono-modal images are computational complexity and re-
quired memory capacity considering number of image pix-
els. In this research, a suitable solution for the reduction
of computational expenses while preserving transformation
accuracy is presented. In this method a set of pixels on
edges via Canny [16] algorithm and those selected by the
uniform mesh are considered as the representatives of image
information. From this point forward, this way of selecting
pixels is called mani f old pixel selection (MPS). Thus
by limiting the number of participating pixels in learning
process, computational expense and the required memory
would decrease significantly. In order to reduce complexity
even more, some data in 225-Dimensional space that have
a distance less than a defined threshold value are removed.
After manifold learning from the opted data out of the image,
decreased dimension data are aligned to [0, 1] interval which
determine the intensity values of pixels in the new modality.
In the next step, the reference image is reconstructed in
accordance to new pixel values in the new modality. To
this end a 5× 5 neighborhood around each pixel is formed
which is the minimum region around each pixel that contains
a part of structural information and the maximum value

conserving details. The distance of each pixel is calculated
with labeled pixels considering the 25-Dimensional vector
and therefore the intensity value of the nearest labeled pixel
will be assigned to unlabeled pixels.

B. Multi-modal similarity measure based on manifold learn-
ing

In this section, a new multi-modal similarity measure is
defined based on the characteristics of manifold learning
algorithms that is the detection of data structure in low
dimensional space. Images of an object obtained from differ-
ent modalities do not have an obvious relation considering
only their pixel intensities but these images have structural
relations due to the common source. If a measure is capable
of extracting such structures then fine registration would
be possible. In this research proposed similarity measures
are categorized in three groups: the first group investigates
the similarity between neighborhood matrix and Laplacian
matrix. In the second group, manifold learning for just
one image is done while in the third group, simultaneous
manifold learning of both images is performed. The latter
two measures are found to be more accurate by exerting a
constraint to the manifold learning problem.

C. Similarity measure based on Laplacian matrix

As stated in advance, by a 15× 15 neighboring region
around each pixel and forming the 225-Dimensional vector,
structural information of an image patch can approximately
be taken into consideration. Subsequently, by forming neigh-
borhood graph in Laplacian eigenmaps algorithm, each da-
tum is assigned to its respective nearest neighbor in high
dimension space which equals connecting pixels with similar
structures in image space. MPS method is employed to make
calculations possible. If the selected pixel locations are just
adopted from the source image, then the maximum similarity
between its Laplacian matrix and neighborhood graph can be
expected in the case images are aligned. Put it together the
following measures are definable:

1) In the first measure the number of nonzero elements
of the neighborhood graph matrix is defined as a
similarity measure.

S1(T ) =
∥∥GR−GF(T )

∥∥
0 (1)

where GR is the neighborhood graph matrix of the
reference image and GF is the float image matrix. In
(1) L1 or L2 norms can be used too but L0 norm
leads to better results.

2) In the second measure, after forming Laplacian ma-
trices of the reference and the float images, their
difference is calculated neglecting values less than
a defined threshold which shows minor differences
in structure. Therefore, by putting threshold on the
difference matrix, remained coefficients will be those
with significant differences in reference and float image
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matrices and the number of the respective nonzero
elements are considered as the similarity measure.

LT = LR−LF (2)

LT (i, j)< ε → LT (i, j) = 0 ∀i, j (3)

S2 = ‖LT‖0 (4)

D. Similarity measure based on manifold learning of one
image

In this method manifold learning is applied to one of
the images trying to find low dimension presentation as
similar as possible to the other image. Again MPS method is
used to make computations tractable. When two images are
completely aligned together then the resulted vector from
manifold learning of the first image is very similar to the
vector obtained from the second image. Mathematically it
can be written as (5):

I∗ = min f (I) = min∑
i
(Ii− I j)

2wI
i j +α ∑

i
(Ii− Ji)

2 (5)

where the first term is the cost function in Laplacian eigen-
maps and the second one expresses the constraint leading
the algorithm to find a proper presentation in low dimension
space which is closer to the respective values in the second
image. wI

i j represents coefficients calculated for i’th and j’th
pixels of I in original Laplacian eigenmaps method. The cost
function can be stated in the matrix form as (6):

f (I) = 2trace(IT LII)+α||I− J||22 (6)

where LI is the Laplacian matrix calculated for selected
pixels of I. In order to find the minimum of (6), its derivative
should be equal to zero as the following:

2×LII∗+α(I∗− J) = 0

I∗ = (2×LI +α)−1× (αJ)
(7)

Using the resulted I∗ and its difference with the second image
vector is defined as the similarity measure as (8):

S = ||I∗− J||2 (8)

In the above calculations each of either the reference or the
float image can be used as the first or the second image.
Now both cases are investigated as following:

S3(T ) = ||(2×LF(T )+α)−1× (αR)−R||2 (9)

S4(T ) = ||(2×LR +α)−1× (αF(T ))−F(T )||2 (10)

S3 tries to liken the low dimension representation of the float
image to the reference image that is more consistent with
the general registration definition compared to the second
measure. In S4 the Laplacian matrix of the reference image is
fixed so it is enough to find the inverse of matrix (2×LR+α)
once and computational complexity is much less than S3.

E. Similarity measure based on simultaneous manifold
learning of both images

The last introduced similarity measure simultaneously per-
forms the manifold leaning of both images and resemblance
of calculated manifolds is defined as a similarity measure.
For this aim, we define a new cost function consisting of
two terms regarding the manifold learning problem of each
images and a third term trying to make learnt manifolds
similar. The final form of the cost function will be as (11):

S(T ) = min
R,F(T )

∑
i, j
(ri− r j)

2wR
i, j +∑

i, j
( fi− f j)

2wF
i, j

+∑
i

β (ri− f j)
2

s.t. [RF ]T [RF ] = I

(11)

This cost function has a trivial completely zero answer
as the cost function in Laplacian eigenmaps. Thus, in order
to prevent from converging to this undesirable result, one
constraint is added to the problem too as shown in (12) in
matrix form:

S(T ) = min
R,F(T )

tr(RT LRR)+ tr(FT LF F)

+ tr(β (F−R)T (F−R))
(12)

LR = DR−W R (13)

LF = DF −W F (14)

DR =

{
∑ j wR

i, j, if i = j
0, otherwise

(15)

DF =

{
∑ j wF

i, j, if i = j
0, otherwise

(16)

In (13), W R and W F corresponds to coefficient matrices
in Laplacian eigenmaps calculated for reference and float
images, respectively. Using Lagrange coefficients and the
derivative of the cost function, we will have:[

LR−β I β I
β I LF −β I

]
×
[

R
F

]
= λ

[
R
F

]
(17)

LT ×VT = λVT (18)

Like the main problem in Laplacian eigenmaps algorithm,
the solution of the above problem leads to the eigenmap
problem. When solving the above problem, two other
similarity measures are definable. One is the magnitude
of the low dimension presentation difference as in (18).
The other one is the value of S(T ) so that when VT is
the eigenvectors of LT then S(T ) will be equal to LT
eigenvalues as (19):

S5(T ) = ‖R∗−F∗(T )‖2 (19)

S6(T ) = trace(V T
T LTV ) = λ (20)

1032



IV. RESULTS
In this section, at first proposed multi-modal to mono-

modal transformation is tested by applying to MR images
obtained from Brain Web [17] then similarity measures are
validated by using them in rigid registration of MR and PET
images from RIRE database [18].
Original images taken from different modalities are shown
in Fig. 1, pixels selected by MPS after manifold learning are
presented in Fig. 2 and afterwards Fig. 3 shows reconstructed
images in new modality. Non-rigid registration done using
SSD as similarity measure is depicted in Fig. 4. Registration
result in original modality is shown in Fig. 5.

(a) Reference (b) Float

Fig. 1. Original images.

Fig. 2. pixels selected by MPS after manifold learning.

Fig. 3. Reconstructed images in new modality.

Fig. 4. Registered images in new modality.

As shown above, proposed transformation changed multi-
modal images to mono-modal with much less computation.
For tested images of size 128× 128 the complexity will
approximately be 1.5% of original method.
To validate proposed measures, similarity of MR and PET
images were calculated with respect to different translation
in x and y directions. Images were chosen from different

(a) B-spline con-
trol points map

(b) Float image
after registration
in original modal-
ity

Fig. 5. Registration result in original modality

slices taken from one subject. A total of 23 image pairs
were used and surface plots obtained are then compared
to the same one created by Mutual Information. Results
show capability of proposed measures in rigid registration
of PET/MR. Surfaces for one of these pairs are shown in
Fig. 6. It can be concluded from Fig. 6 that global extremum
of proposed similarity measures happen in the same place
as mutual information. For S5 and S6, surface plots shows
less local extremum and a more distinctive maximum than
others.Among proposed similarity measures, S4 needs less
computation and shows acceptable results in these tests.
Furthermore, because of having linear relation to intensity
of float image pixels, derivative base on this measure can be
developed to be used in non-rigid registration.

V. DISCUSSION AND CONCLUSION

In this paper we introduced some similarity measures
based on manifold learning features and application in image
processing especially the capability of transforming multi-
modal images to mono-modal ones. Manifold learning tries
to reveal data structures; moreover, multi-modal images
almost have the same structural information. As a result,
equivalent manifolds for multi-modal images are expected.
Proposed measures employed Laplacian eigenmaps to calcu-
late image manifolds and can be categorized in three groups.
The first group considers the neighborhood or Laplacian
matrix difference as a measure of similarity. In the second
group, the manifold of one image is primarily learnt and then
its comparison with the second image is considered as a mea-
sure. Finally, the third group consists of methods computing
both image manifolds simultaneously and then defining their
difference as a similarity measure.To validate the proposed
measures, a rather difficult task of registration was done;
rigid registration of PET/MR images was tested. Results
show acceptable performance where all measures display an
extremum at the same place as mutual information. S5 and
S6 similarity measures have more significant extrema with
a smoother surface compared to other measures including
mutual information.
Furthermore, among the proposed measures, only S1 acts free
from a regularization parameter which can be counted as an
advantage. In S2, the threshold should be given and in our
tests it was in range [0.05 0.2]. Moreover, S4 and S3 have α

and it was suggested to be in range [0.001 0.05]. In addition,
S5 and S6 have β that according to our tests can be chosen
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(a) T1 image (b) PET image (c) Mutual information

(d) S1 (e) S3 (f) S5

(g) S2 (h) S4 (i) S6

Fig. 6. Plot of similarity measures with respect to translation in x and y direction. For better visualization negative of measures are shown. Maxima
indicate best alignment.

from [0.001 0.01]. Although performance of proposed meth-
ods do not vary significantly in suggested ranges but fine
tuning can lead to a more accurate registration.
From computational complexity point of view, S4 outper-
forms other methods since only matrix inverse should be
computed once and a simple matrix multiplication is needed
each time. Besides, because of a linear relationship between
pixel intensities of the float image and S4, gradient based
approach for non-rigid registration of multi-modal images
can be derived.
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