
  

 

Abstract—Independent component analysis (ICA) has been 
widely applied to identify brain functional networks from 
multiple-subject fMRI. However, the best approach to handle 
artifacts is not yet clear. In this work, we study and compare two 
ICA approaches for artifact removal using simulations and real 
fMRI data. The first approach, recommended by the human 
connectome project, performs ICA on individual data to remove 
artifacts, and then applies group ICA on the cleaned data from 
all subjects. We refer to this approach as Individual ICA 
artifact Removal Plus Group ICA (IRPG). A second approach, 
Group Information Guided ICA (GIG-ICA), performs ICA on 
group data, and then removes the artifact group independent 
components (ICs), followed by individual subject ICA using the 
remaining group ICs as spatial references. Experiments 
demonstrate that GIG-ICA is more accurate in estimation of 
sources and time courses, more robust to data quality and 
quantity, and more reliable for identifying networks than IRPG. 

 

I. INTRODUCTION 

ICA has an appealing advantage over conventional 
techniques for studies of functional magnetic resonance 
imaging (fMRI) data, i.e. no requirement for the 
hemodynamic response function or regions of interest 
selection[1]. Spatial ICA (sICA) is by far the most widely used 
approach for fMRI, which considers fMRI data as a linear 
mixture of spatially independent components (ICs) that are 
mixed by their respective time courses (TCs). The remainder 
of this paper focuses on sICA denoted by ICA for simplicity. 

Although ICA has been successful in the analysis of fMRI 
data, one of the challenges is in labeling ICs that include not 
only meaningful functional networks but also various 
artifacts arising from imaging and physiology activity. Issues 
like identifying artifacts and selecting the number of sources 
become more challenging when analyzing multi-subject 
fMRI. 

Two kinds of ICA approaches are usually adopted in fMRI 
studies with multiple subjects. One kind performs ICA for 
each subject and then establishes correspondence of ICs 
across subjects using subjective identification, clustering or 
cross correlation. However, it is difficult to establish 
correspondence due to the different ordering of ICs, 
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especially if the number of components is different. The other 
kind, referred to as group ICA[2-4], can establish direct 
correspondence of ICs across subjects through implementing 
an ICA on all data and then estimating subject-specific 
ICs/TCs from group results. Group ICA approaches include 
spatial concatenation, temporal concatenation[2,3] and tensor 
organization methods, though temporal concatenation 
methods are most widely used. Typical temporal 
concatenation approaches utilizing either PCA-based[2] or 
regression-based[3,5] back reconstruction capture individual 
variability well, but may not be optimal for artifacts which 
can be extremely unique across subjects[4]. 

In this paper, we study and compare two approaches for 
artifact removal based functional networks extraction from 
multiple-subject ICA of fMRI data. The first approach 
recommended by the human connectome project[6], which we 
call IRPG for Individual ICA artifact Removal Plus Group 
ICA, implements individual ICA on each subject data, 
identifies and removes artifact ICs from each ICA result, and 
then performs group ICA on the reconstructed datasets. The 
IRPG approach accounts for extreme inter-subject variability 
in the artifacts, however the difficulties inherent in 
identifying subject-specific artifact ICs and inaccuracy of the 
estimated number of ICs may cause problems. This is 
particularly the case if many subjects are involved, although 
approaches for training classifiers can help mitigate this to a 
degree[6]. The second approach skips the expensive 
single-subject ICA step and directly applies a variant of group 
ICA based on a new one-unit ICA with reference algorithm[7]. 
This approach, called Group Information Guided ICA 
(GIG-ICA)[7], implements ICA on all data, and then uses the 
non-artifact group ICs as references to compute individual 
networks. Compared to IRPG, GIG-ICA does not require 
individual identification of artifact ICs for each subject. 
Instead, GIG-ICA takes advantage of the fact that 
components which show similarity among subjects (e.g. the 
networks of interest) tend to not be corrupted by the unique 
artifacts[2] but allows for additional flexibility in individual 
subjects by re-optimizing the independence using the group 
maps via a multi-objective function optimization algorithm.  

II. METHODS 

We first introduce the framework and parameters for IRPG 
and GIG-ICA, and then describe simulations and real fMRI 
experiments.  

IRPG involves steps: (1) ICA on each individual dataset, (2) 
identification of subject-specific artifact ICs, (3) individual 
data reconstruction based on the remaining non-artifact ICs, 
and (4) group ICA on the reconstructed data from all subjects. 
Group ICA is implemented by temporal concatenation[2] with 
spatio-temporal (dual) regression[3,5] to be consistent with 
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some recent work from the human connectome project[6]. 
Some free parameters in IRPG include the number of PCs/ICs 
in step 1 (I1), the number of PCs in the subject-level PCA of 
step 4 (I2), and the number of PCs/ICs in the group-level 
PCA/ICA of step 4 (I3).  

GIG-ICA involves steps: (1) application of group level 
ICA to all subject datasets, (2) identification of artifact group 
ICs, (3) computation of individual ICs via one-unit ICA with 
reference algorithm on individual datasets using the 
non-artifact group ICs as spatial references[7], and (4) 
computation of individual TCs using regression. Relevant 
free parameters in GIG-ICA include the number of PCs in the 
subject-level PCAs of step 1 (G1), and the number of PCs/ICs 
in the group-level PCA/ICA of step 1 (G2).  

A.  Experiments using simulations 
Multi-subject fMRI-like data were generated using SimTB 

toolbox[8]. For subjects i = 1⋯M (M = 10) , simulated 
datasets were generated under a linear mixture model using 
C (C = 8) source images (148 × 148 pixels) and associated 
TCs with certain time points. Rician noise was added to the 
linear mixture of sources with a specified contrast-to-noise 
ratio (CNR). Among C  sources, some were labeled as 
non-artifact sources, while others were labeled as artifacts. 
The jth  source of the ith  subject is denoted by Si,j . When 
j = 1,⋯ , K (K = 7), Si,j was non-artifact sources, and when 
j = K + 1,⋯ , C, Si,j was artifact sources.  

Experiment 1: Effect of data quality and quantity 

Simulated ground-truth (GT) sources and their associated 
TCs of two subjects are shown in Fig. 1. The 8th source with 
high frequency TC is chosen as the artifact. For different 
subjects, each of the eight sources was generated through 
adding subject-specific variability to a common map. In this 
experiment, datasets with time points of TCs as 150 and 
different CNRs ranging from 0.5 to 2 were used to evaluate the 
effect of data quality, and datasets with CNR as 2 and time 
points of TCs varied from 40 to 120 were used to evaluate the 
effect of data quantity. 

For IRPG, I1 was specified as the true source number C for 
all subjects, I2 and I3 were set to C − 1  reflecting the true 
number of remaining ICs since a single individual artifact IC 
was accurately identified and removed by finding the 
individual IC with the largest absolute value of Pearson 
correlations to respective artifact template. The artifact 
template for the 𝑖𝑡ℎ  subject in IRPG was defined as the 
subject-specific ground-truth (GT) artifact source 𝑆𝑖,8 . For 
GIG-ICA, both G1 and G2 were set to 𝐶. For GIG-ICA, the 
group level artifact was accurately identified by finding the 
group IC with the largest absolute value of Pearson 
correlations to a artifact template 𝑇8, which was generated by 
averaging the GT artifact sources across subjects. Here, we 
define 

𝑇𝑗 = 1
𝑀
∑ 𝑆𝑖,𝑗𝑀
𝑖=1 .                                   (1) 

To evaluate the accuracy of each estimated individual 
IC/TC, the absolute value of Pearson correlation coefficient 
between the IC/TC and its related GT source/TC was 
computed. The mean of all IC/TC accuracy was calculated to 

 
Figure 1. Ground-truth (GT) sources and TCs of two subjects. 

reflect overall spatial/temporal accuracy of one subject. The 
GT source associated with each estimated IC was identified by 
matching the group ICs and non-artifact templates Tj 
(j = 1⋯7). Based on a correlation matrix, each element of 
which reflects the spatial correlation of one group IC and one 
Tj , a greedy rule was applied to match group ICs to 
non-artifact templates one by one, accordingly individual 
ICs/TCs’ corresponding GT sources/TCs were found one by 
one. In the following experiment, we used a similar approach 
to evaluate the quality of ICs/TCs estimation.               

Experiment 2: Effect of spatially unique artifact  

In the experiment 1, corresponding sources of different 
subjects were simulated by adding subject-specific spatial 
variation to a common map. However, in real data it is likely 
that spatially unique sources exist among subjects, particularly 
for artifacts. Therefore, greatly varied spatial artifacts (the 8th 
source) with high-frequency TCs were generated for subjects 
as shown in Fig. 2. In this experiment, CNR was 2 and time 
points of TCs was 150, and parameters setting of two methods 
are as same as that in Experiment 1. For IRPG, the artifact IC 
of each subject was identified correctly by finding the TC with 
the most high frequency power. For GIG-ICA, the artifact 
group IC was identified accurately as a group IC that 
generated high-frequency individual TCs.  

 
Figure 2. Ground-truth (GT) artifact sources and TCs for ten subjects.  

B. Experiment using real fMRI data 
Resting fMRI datasets comprising 25 healthy participants 

with three scans[9] were preprocessed using SPM8. For each 
dataset, the first ten images were discarded, and the remaining 
images were slice-time corrected and realigned to the first 
volume for head-motion correction. Subsequently, the images 
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were spatially normalized to the MNI EPI template and 
spatially smoothed with a 6 mm FWHM Gaussian kernel. 

These 75 datasets were then subjected to IRPG and 
GIG-ICA to extract intrinsic functional networks (INs). Since 
the estimated maximum and mean number of ICs using 
Minimum Description Length criteria (MDL), Akaike 
Information Criterion (AIC), and Kullback–Leibler 
Information Criterion (KIC) were 45 and 20, respectively, we 
set I1  to 45, I2  to the minimum number of remaining 
dimensions after artifact removal, and I3  to 20 with the 
condition that I3 < I2 . For GIG-ICA, G1  and G2  were 
respectively set as same as I1  and I3  for an equivalent 
comparison. In the group ICA step for both IRPG and 
GIG-ICA, ICASSO[10] was used with 20 iterations to find 
reliable group components.  

To automatically identify artifact individual ICs in IRPG, 
we adopted an approach similar to a method proposed by 
Bhaganagarapu[11], and computed seven parameters from each 
IC and related TC. We define 𝐼𝐶𝑡ℎ𝑟 is the binary 3D map of 
each z-scored IC after thresholding with z>2. Four parameters 
include the overlap degree between 𝐼𝐶𝑡ℎ𝑟 and a CSF mask, 
denoted by 𝑂𝐶, the overlap degree between 𝐼𝐶𝑡ℎ𝑟 and a white 
matter mask, denoted by 𝑂𝑊 , the overlap degree between 
𝐼𝐶𝑡ℎ𝑟 and a grey matter mask, denoted by 𝑂𝐺, and 𝐼𝐶𝑡ℎ𝑟 and a 
brain edge mask, denoted by 𝑂𝐸 . Other parameters include 
smoothness measure of IC[11], denoted as 𝑆𝐴, low frequency to 
high frequency power ratio of the z-scored TC, denoted as 𝐹, 
and the negative value of derivative sum of power spectrum of 
the z-scored TC within the low frequency range, denoted as 𝐷. 
We determined separate thresholds for above parameters 
according to their distributions to identify artifacts, denoted as 
𝑇ℎ𝑟{𝑂𝐶}, 𝑇ℎ𝑟{𝑂𝑊}, 𝑇ℎ𝑟{𝑂𝐺}, 𝑇ℎ𝑟{𝑂𝐸}, 𝑇ℎ𝑟{𝑆𝐴} , 𝑇ℎ𝑟{𝐹} , 
and 𝑇ℎ𝑟{𝐷} . ICs were considered as artifacts if 𝑂𝐶 >
𝑇ℎ𝑟{𝑂𝐶} , 𝑂𝑊 > 𝑇ℎ𝑟{𝑂𝑊} , 𝑂𝐺 < 𝑇ℎ𝑟{𝑂𝐺} , 𝑂𝐸 > 𝑇ℎ𝑟{𝑂𝐸} , 
𝑆𝐴 < 𝑇ℎ𝑟{𝑆𝐴} , or 𝐹 < 𝑇ℎ𝑟{𝐹}  and 𝐷 < 𝑇ℎ𝑟{𝐷} . For 
GIG-ICA, 𝑂𝐶 , 𝑂𝑊 , 𝑂𝐺 , 𝑂𝐸 , and 𝑆𝐴 were computed for each 
group IC. Preliminary individual TCs were calculated using 
regression, and then the average 𝐹  and 𝐷  of corresponding 
TCs from all datasets, denoted as 𝐹� and 𝐷�, were computed, 
respectively. Similarly, 𝑇ℎ𝑟{𝑂𝐶} , 𝑇ℎ𝑟{𝑂𝑊} , 𝑇ℎ𝑟{𝑂𝐺} , 
𝑇ℎ𝑟{𝑂𝐸}, 𝑇ℎ𝑟{𝑆𝐴}, 𝑇ℎ𝑟{𝐹�}, and 𝑇ℎ𝑟{𝐷�} in GIG-ICA were 
determined to identify and remove artifact group ICs. 

To evaluate the reliability of the estimated individual INs, 
(1), the pair-wise similarity of all individual INs were 
computed, (2), all individual INs were projected to a plane 
using t-Distributed Stochastic Neighbor Embedding (t-SNE) 
method[12], (3), voxel-wise one-sample t-tests were performed 
for each IN and the maximum t-value was compared, (4), 
voxel-wise intra class coefficients (ICCs) between INs from 
scan 1 and mean INs from scan 2 and 3 were calculated, and 
the mean ICC of each IN was then computed across voxels 
within a specific mask including only statistically significant 
voxels from the one-sample t-tests. 

III. RESULTS 

A.  Experiments using simulations 
Experiment 1: Effect of data quality and quantity  

As shown in Fig. 3, the accuracy of estimation improves 
with increasing CNR as well as time points of TCs for both 

IRPG and GIG-ICA. However, GIG-ICA showed more 
reliable and better performance than IRPG, and worked well 
even in the case of low CNR or few time points of data.  

 
Figure 3. Spatial and temporal accuracy obtained from IRPG and GIG-ICA 
from (A) datasets with different CNR and (B) datasets with different number 
of time points of TCs. Each point in a given boxplot corresponds to the mean 
accuracy of ICs/TCs for one subject.  
Experiment 2: Effect of spatially unique artifact 

Fig. 4 shows the accuracy results of each individual IC/TC 
obtained from IRPG and GIG-ICA for all subjects. Even 
when subjects had spatially unique artifacts, GIG-ICA had a 
better performance for ICs and a comparable performance for 
TCs compared to IRPG (mean of temporal accuracy for IRPG 
and GIG-ICA are 0.905 and 0.902, respectively). 

 
Figure 4. The spatial accuracy of individual ICs and temporal accuracy of 
individual TCs obtained from IRPG and GIG-ICA. Each point in a given 
boxplot corresponds to the accuracy of one IC/TC for one subject. The order 
of ICs in x-axis is as same as that of those non-artifact sources in Fig. 1. 

B. Experiment using real fMRI data 
In real data, 12 corresponding INs were found and 

compared between methods. Fig. 5 (A) shows the correlations 
between all INs of all subjects. Corresponding INs across 75 
datasets are relating to a diagonal sub-matrix (size:75 × 75), 
which indicates that INs from GIG-ICA were more spatially 
consistent. Projection results of all individual ICs are shown 
in Fig. 5(B), which illustrates that corresponding INs from 
GIG-ICA presented a more tightly clustered pattern while INs 
estimated from IRPG presented mixed pattern to some degree. 
The maximum t-value of each IN was larger (Fig. 5(C)) and 
mean ICC values were greater (Fig. 5(D)) in GIG-ICA. 
One-sample t-test results of networks (FDR corrected p<0.01) 
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are shown in Fig. 6. These results demonstrate that networks 
obtained from GIG-ICA had higher reliability than those 
computed by IRPG. 
 

 
Figure 5. (A) The correlation matrix of individual INs from IRPG and 
GIG-ICA. (B) Projection of individual INs estimated by IRPG and GIG-ICA. 
Points with the same color denote corresponding INs from different datasets. 
Different colors denote different INs. (C) Maximum t value of each IN. (D) 
Mean ICC between scan 1 and the averaged scan 2 and scan 3 for each IN. 

 
Figure 6. One-sample t-test statistics for the matched 12 networks, 
thresholded at p<0.01 with FDR correction for IRPG and GIG-ICA. The 
order of ICs (INs) is as same as that in Fig. 5. 

IV. CONCLUSION 
In this paper, we address two approaches for functional 

networks extraction based on artifact removal from 

multi-subject ICA of fMRI. IRPG first removes artifact ICs 
from separate individual ICA results, and then implements a 
traditional group ICA on cleaned data from all subjects. 
GIG-ICA removes group level artifacts after an ICA on all 
subject datasets, and then estimates subject-specific ICs with 
non-artifact group ICs as references. Simulation based 
experiments demonstrate that GIG-ICA showed better 
performance than IRPG, even in the case where 
single-subject artifact removal was perfect for IPRG and 
where subjects had spatially unique artifacts. Furthermore, 
simulation based experiments also reveal that IRPG was more 
sensitive to data quality and quantity compared to GIG-ICA. 
Experiment using test-retest fMRI data illustrates that 
GIG-ICA generated more reliable brain networks with less 
noise. In summary, GIG-ICA is considerably more accurate 
in estimation of sources and time courses, more robust to 
changes in data quality and quantity, and more 
straightforward to apply to functional networks extraction. 
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