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Abstract— The characterisation of functional interdependen-
cies of the autonomic nervous system (ANS) stands an ever-
growing interest to unveil electroencephalographic (EEG) and
Heart Rate Variability (HRV) interactions. This paper presents
a biosignal processing approach as a supportive computational
resource in the estimation of sleep dynamics. The application
of linear, non-linear methods and statistical tests upon 10
overnight polysomnographic (PSG) recordings, allowed the
computation of wavelet coherence and phase locking values,
in order to identify discerning features amongst the clinical
healthy subjects. Our findings showed that neuronal oscillations
θ , α and σ interact with cardiac power bands at mid-to-
high rank of coherence and phase locking, particularly during
NREM sleep stages.

I. INTRODUCTION

The bioelectrical activity of the neuronal cortex, accom-
panied by Heart Rate Variability (HRV) fluctuations, are two
major actuators in the regulation of the sympathetic and
vagal cardiac dynamics of the Autonomic Nervous System
(ANS) [1]. Henceforth, the development of biosignal pro-
cessing techniques over electroencephalographic (EEG) and
electrocardiographic (ECG) recordings points to elucidate
the characteristics of interdependencies across sleep stages.
We also suggest a computational approach supported by
time-frequency and phase-oriented methods to quantify the
functional interactions between EEG and HRV power bands.

Until now, the research works about EEG↔HRV interde-
pendence have made use of linear and non-linear procedures
to identify unique features during resting, task-oriented or
sleeping conditions [2]. The application of analyses based on
the extraction of instantaneous amplitudes, frequencies and
phases has demonstrated the sporadic appearance of coupled
oscillations between high-regime HRV and low-regime EEG
power bands; such as HRV-HF (0.15-0.4 Hz), δ (0.5-4
Hz), θ (4-8 Hz) and α (8-12 Hz), respectively [3] [1] [4].
However, those investigations have been mainly undertaken
for either EEG↔EEG or cardiorespiratory cross-evaluations,
within electrophysiological recordings of limited duration
(less than 1 hour). Subsequent studies have promoted more
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sophisticated methods to estimate apart from the functional
interaction, also directional interdependence, taking into ac-
count sleep stages progression [5] [6]. In this paper, the
aim is to introduce linear and non-linear directed interde-
pendencies along sleeping periods, which were observed
through more extensive polysomnographic (PSG) recordings.
Additional findings are pending to be clarified, regarding fast
time-varying events, recurrent patterns and the corresponding
interpretation of their physiological relevance.

In this paper, we propose a computational approach to per-
form linear, non-linear and statistical analyses over long-term
PSG recordings, considering 15 EEG and 1 ECG channels.
Relaying on recognised methods, e.g. Wavelet Coherence
and n:m phase synchronisation; we attempt to characterise
the functional interdependences of 10 healthy subjects along
an overnight sleeping period. Our results suggest the pres-
ence of spectral and phase-related dependencies of neuronal
and cardiac power bands with spatial divergences and con-
strained to sleep stages. Also, the sleep staging plays a major
role in the differentiation of sympathetic and parasympathetic
activity on each subject. In this sense, we encourage the
adoption of biosignal processing as an assisting tool for a
more precise interpretation of ANS activity during sleeping
periods.

II. METHODS

The characterisation of functional interdependence be-
tween EEG↔HRV power bands is composed by three main
stages: pre-processing, processing and statistical analysis.
The pre-processing stage strives a preliminary deployment
for the raw EEG/ECG signals, including epoch segmentation,
inter-neural clustering and power band decomposition [7].
Afterwards, the processing stage performs the extraction
of features, appealing to Time-Frequency Analysis (TFA)
and phase synchronisation techniques. The last but not
least, a statistical rank test pursues significant differences
within the yielded features and the previously scored sleep
stages, attending to the non-linearity, non-stationarity and
non-Gaussianity attributes of the original sets of data. The
complete computational analysis was developed with the
software package MATLAB c© 7.13 (The MathWorks Inc.,
USA).

A. Subjects and clinical data

The PSG recordings were obtained from 10 healthy sub-
jects. Each subject undertook an overnight PSG recording at
the Sleep Laboratory of the Central Institute of Mental Health
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in Mannheim, Germany. In accordance to the Rechtschaf-
fen and Kales (R&K) scoring manual, EEG signals are
partitioned into 30-second epochs to categorise the overall
sleep staging with Wake (W), Stage 1 (S1), Stage 2 (S2),
Stage 3 (S3) and Stage 4 (S4) and Rapid Eye Movement
(REM) sleep categories. The study was approved by the local
ethic committee of the Medical Faculty Mannheim of the
University of Heidelberg, Germany.

B. Pre-processing

Initially, the pre-processing routine performs a partition of
consecutive 30-second epochs per PSG channel, intending
to conserve power and time alignment properties. Next,
inter-neural clustering associates EEG signals into a single
composite, based on correlation coefficients and distribu-
tion divergence measures amongst nearby electrodes. For
instance, C4z3 merges three different sources, whereas central
(Cz), right- (C4) and left hemisphere (C3) locations of the
scalp, plot statistically resemblant potentials in an inter-
hemispheric context [6]. By averaging out the correlated
EEG monopolar channels (bipolar electrodes are excluded
for compatibility reasons), the clustering routine groups the
inter-neural areas [8] as Table I depicts.

At the end, the power bands decomposition routine decon-
structs the inter-neural clusters into 6 oscillatory bands, such
as delta δ (0.5-4 Hz), theta θ (4-8 Hz), alpha α (8-12 Hz),
sigma σ (12-16 Hz), beta β (16-32 Hz) and gamma γ (32-64
Hz). Similarly, HRV frequency bands LF (0.04-0.15 Hz) and
HF (0.15-0.4 Hz) [9] [2] are computed from the ECG signal
by using R-to-R interval (RRI) computation, an algorithm for
sequential peak detection, smoothing by interpolation and a
final upsampling step, just as the guidelines in [9] consign.
Here, the introduction of Wavelet Packet Transform (WPT)
allows a time-frequency decomposition supported on the co-
efficients shrinkage principle to generate the aforementioned
EEG and HRV frequency bands [10].

C. Processing

The processing stage deals with the features extraction
task, in an attempt to characterise the functional interdepen-
dences between neuronal and cardiac power activity amongst
the decomposed frequency bands [5] [1]. Previously, linear
measures have demonstrated their suitability to estimate syn-
chronisation tendencies, in this case, we employed coherence
supported by the continuous wavelet transform (CWT) for
its computation [8]. Wavelet coherence computes the auto-

TABLE I
INTER-NEURAL CLUSTERS

Parcel Electrodes Abbreviation

1 C3A2,CzA1,C4A1 C4z3

2 O2A1,O1A2 O21

3 F8A1,F7A2 F87

4 F4A1,F3A2 F43

5 P4P3,P4Pz,P3Pz P43

6 T3T5,T4T6 T43

and cross-power spectrum S(·) to produce an unitary value,
matching time translation and frequency scale domains.

κxy
2(ω0) =

|S
(
Wxx

H(s,τ)Wyy(s,τ)
)
|2

|S(Wxx(s,τ)) ||S(Wyy(s,τ)) |
(1)

where W(s,τ) denotes the continuous wavelet transform
at scale s and translation index τ .

For the present paper, we designate n:m phase synchro-
nisation as the preferred approach for non-linear estimation.
More precisely, the non-linear interdependence is quantified
by the Phase Locking Value ζn,m [3], which casts a locking
unitary value of n cycles from one oscillation to m cycles
of the other. The n,m values are chosen based on the
central frequencies relations for each pair of power bands.
This method engages a couple of convolutions between the
EEG or HRV filtered signal and the complex-valued Gabor
wavelet [6]. Then, the differences of instantaneous phases
ϕ̂n,m[k] are computed at each time instant, which in turn, are
mapped to a cyclic [0,2πm) interval. And, the strength of the
interdependence is quantified by the magnitude of the phases
differences expectation E{·}; such a measure is known as
PLV, as Eq. 2 denotes.

ζn,m =

√
(E{cos ϕ̂n,m[k]})2 +(E{sin ϕ̂n,m[k]})2 (2)

To finalise, a normalisation routine is applied to fit the
generated features into 0−1 interval, to improve the results
interpretation of further statistical analyses.

D. Statistical analysis

By dealing with biological signals, an evaluation of
Gaussianity conditions is required, in order to conduct an
appropriate statistical analysis beneath the clinical cohort.
The Bartlett test assessed an analytical divergence of the
mean and covariance of the modelled data versus the Gaus-
sian distribution. Those preliminary inspections proved a
strong deviation from the Gaussian tendency, suggesting the
application of a series of Kruskal-Wallis rank tests [11].
Such an omnibus test lacks of the ability to differentiate the
inter-neural cluster casting the significant difference, but its
corresponding coupling/decoupling activity intends to elicit
interactions with significant values p < 0.05 amongst bands
and sleep stages.

III. RESULTS

The linear analysis represented by the wavelet coherence,
arranged one sleep cycle into a multi-stage periodogram,
which included EEG/HRV power bands and averaged out
clinical group. Out of the macro-periodogram in Fig. 1, the
coherence between low-regime EEG bands, such as δ ,θ ↔
LF,HF was turning stronger (0.4− 0.5) over W and REM
stages. Inasmuch as, we moved to θ , σ and β oscillations
in relation to HF, it was observed an increasing activity
(0.5− 0.7) in deep sleep stages, S3 and S4. Opposite to
this, EEG ↔ LF relationship hardly exceeded 0.4− 0.45
coherence levels. One of the most interesting matters was the
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Fig. 1. Macro-periodogram of Wavelet Coherence considering EEG δ , θ , α , σ , β and γ at C4z3 parcel against HRV LF and HF bands for sleep stages
W, S1, S2, S3, S4 and REM. On the x-axis, each periodogram’s cell portrays averaged out 30-seconds epochs corresponding to a particular sleep stage
over the 10 subjects, and 12 wavelet-scaled pseudo-frequencies are ordered on the y-axis starting on ca. 89.8 Hz till (top scale) 0.04 Hz (bottom scale).
The colour scale assigns the black-violet spectrum for low coherence values, whilst red-yellow intensities represent the surrounding unitary values, i.e.
high coherence. ∗ statistically significant (p < 0.05) after Kruskal-Wallis rank test.

uniform coherence between θ ↔HF bands along the 6 sleep
stages, which slowly faded out to mid-level coherence (0.5)
from σ band region. In respect to the remaining inter-neural
clusters, which are not shown here; it was corroborated
the bright activity (0.6− 0.75) of EEG low-regime bands
δ /θ ↔ LF/HF, moving towards dissipating levels at α to γ

frequencies.
In correspondence to the non-linear analysis, n:m phase

synchronisation realised polar diagrams to illustrate the
cross-frequency locking values at each sleep stage. The
functional interdependence in EEG↔HF power bands main-
tained a regular mid-value (0.3− 0.4) for W, S1 and REM
stages. Focusing on low-regime bands δ and θ , the S4
reached its highest value around 0.6. As far as we moved
to α band, S3 took the lead, and finally S2 consolidated the
strongest phase interaction within σ and β bands. Due to the
lack of statistically significant results and space limitations,
the polar diagrams for this case are not displayed. On the
contrary, EEG ↔ LF interactions in Fig. 2 showed that
S4 and REM stages surpassed 0.6 locking level at both
extremes of the neuronal spectrum, i.e. δ and β power
bands. Similarly, S1 stage registered a noticeable deviation
(0.7), when σ oscillation was concerned. For the remaining
power bands and sleep stages, the synchronisation strength
preserved homogeneous values around 0.4. None radical
difference was found in the polar diagrams of the alternative
inter-neural clusters.

Lastly, a series of omnibus Kruskal-Wallis rank tests were
addressed in order to identify significant differences, attend-
ing to all interactions of EEG↔ HRV power bands, sleep
stages and electrode clusters. Wavelet coherence (WCOH)
method elicited a larger number of significant values includ-
ing W, light (S2) and deep sleep (S3, S4) stages between θ ,
α , σ ↔ HF frequency pairs with (χ2 = 11.76, p = 0.038)
and (χ2 = 13.11, p = 0.022) test values. Nonetheless, no

significant results turned to be sufficiently divergent between
neuronal EEG bands and HRV-LF by the time of wavelet
coherence evaluation. In contrast, PLV did reveal relevant
differences between θ (χ2 = 11.76, p = 0.038), α (χ2 =
13.11, p = 0.022), σ (χ2 = 11.76, p = 0.038) and HRV-LF
cross-frequencies, located at S2 and REM stages. Figures 1
and 2 labelled the statistically significant values (using ∗)
according to these criteria.

IV. DISCUSSION AND CONCLUSIONS

The predominant activity of LF cardiac band during
W/REM stages, as well as, HF along NREM periods have
been claimed by previous works [12]. Our findings not
only reaffirmed that statement, but also evidenced the co-
herence related to the low-regime EEG frequency bands, i.e.
W and REM stages kept a coherent interdependence with
sympathetic system (HRV LF). Beside this, a progressive
retreat of cross-frequency interaction was detected during
NREM stages, which is explained by a vagal cardiac system
emergence or HF power band ascendancy. A novel issue of
this work suggested the strong interdependence of δ and θ

oscillations, in contrast to the weak interactions of the high-
regime power bands, such as β and γ . Consequently, we
sustain that the functional interdependencies of sympathetic
and parasympathetic are vaguely related to high neuronal
oscillations within healthy population.

Wavelet coherence and PLV coincided on the interde-
pendence of the sympathetic system (HRV LF) across W
and REM stages. Furthermore, it was demonstrated from a
non-linear approach, the intrinsic phase-coupled activity of
parasympathetic system (HRV HF) during NREM episodes.
Although, n:m phase synchronisation is strictly constrained
to the choice of non-arbitrary pairs of central frequencies,
whereas it can only exist a rational quotient in between. In
this manner, we can assure that n, m integers are invariant
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Fig. 2. Polar diagram of n:m Phase Synchronisation for clinical cohort. Phase Locking Value between C4z3-δ , θ , α , σ , β and γ versus HRV LF band.
The coloured point represent the absolute mean PLV between 0-to-1 scale at each sleep stage, accompanied by a centred circle expressing the standard
deviation amongst the group members. ∗ statistically significant (p < 0.05) after Kruskal-Wallis rank test.

to multiples of phase slips [13]. Even though this condition
holds, larger n, m integer values could produce unstable and
less robust synchronisations, e.g. spurious couplings, due to
the implicit commutative variance.

From the results of Kruskal-Wallis rank tests, we could
statistically confirm most of the conclusions here previously
suggested. First, wavelet coherence method highlighted the
statistically importance of interactions at θ , α and σ power
bands, but only related to the vagal cardiac (parasympathetic)
activity during NREM sleep stages (W, S2, S3, S4). However,
PLV became a suitable complement to describe neuronal and
sympathetic activity, which involved the same power bands,
but limited to S2 and REM stages. Such findings concurred
with previous studies [14] [12] with the novel corroboration
of associated linear and non-linear approaches. Although,
further data analyses should be conducted, in order to discard
eventual overestimations misleading these findings. Until
now, we can hypothesise that TFA-based methods are more
reliable to discriminate functional interdependencies within
parasympathetic system. Foremost, PLV estimated in a more
accurate way the strong interaction of θ , α and σ bands to
differentiate the sympathetic counterpart.

The obtained results indicate the existence of significant
differences between EEG and HRV power bands, in terms of
time-frequency coherence and phase synchronisation across
overnight sleep cycles. Moreover, the influence between mid-
range EEG bands and parasympathetic activity during light
and deep sleep stages was enhanced by the tracking of
functional interdependencies during W stage. It is advised,
the conduction of additional studies to determine with more
detail the impact of non-linear approaches, e.g. surrogate data
analysis. In consonance, TFA-oriented approaches for the
differentiation of sleep physiopathologies, should be more
extensively explored.
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