
  

 

Abstract— Different regions in the resting brain exhibit non-

stationary functional connectivity (FC) over time. In this paper, 

a simple and efficient framework of clustering the variability in 

FC of a rat’s brain at rest is proposed. This clustering process 

reveals areas that are always connected with a chosen region, 

called seed voxel, along with the areas exhibiting variability in 

the FC. This addresses an issue common to most dynamic FC 

analysis techniques, which is the assumption that the spatial 

extent of a given network remains constant over time. We 

increase the voxel size and reduce the spatial resolution to 

analyze variable FC of the whole resting brain. We hypothesize 

that the adjacent voxels in resting state functional magnetic 

resonance imaging (rsfMRI), just as in task-based fMRI, 

exhibit similar intensities, so they can be averaged to obtain 

larger voxels without any significant loss of information. 

Sliding window correlation is used to compute variable 

patterns of the rat’s whole brain FC with the seed voxel in the 

sensorimotor cortex. These patterns are grouped based on their 

spatial similarities using binary transformed feature vectors in 

k-means clustering, not only revealing the variable and non-

variable portions of FC in the resting brain but also detecting 

the extent of the variability of these patterns.  
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Functional Connectivity, Sliding Window Correlation, k-
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I. INTRODUCTION 

Recent studies  have revealed that functional networks [1, 

2] can be identified in spontaneous brain activities [3] of 

humans and animals. Understanding functional connectivity 

(FC) variations in the human brain can therefore assist in the 

identification of brain disorders [4, 5]. This study is 

motivated by the need to comprehend the variability of FC 

as a function of time, known as dynamic FC. As recent 

research indicates this variability may be a biomarker for 

normal variations in performance and alterations resulting 

from neuropsychiatric disorders [6, 7]. 

Functional magnetic resonance imaging (fMRI) is a 

noninvasive technique for measuring brain activities by 
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detecting the blood oxygenation level-dependent (BOLD) 

signal, which occurs in response to neural activities. So the 

fMRI is often used to compute the activity maps of the brain 

regions while performing a specific task. Resting state 

functional MRI (rsfMRI) is performed when the subject is 

awake but not performing an explicit task. For a long time, it 

was believed that FC was stationary over the whole scan 

time (usually in minutes) of rsfMRI. Recent studies, 

however, have shown that areas in the resting brain are 

functionally connected  and numerous studies [8] have 

demonstrated the dynamic nature of FC in humans [9, 10] 

and animals [11-13]. FC changes have been detected over a 

few seconds, which is more comparable to the duration of 

cognitive processes. At least a part of this variability is due 

to changes in neural activities [14-18]. 

The study of the rsfMRI of network dynamics is still in its 

infancy, and many of its aspects remain unexplored. In this 

paper, we investigate one such aspect by observing changes 

in the FC network configurations over time, which is a 

challenging task since variations in FC networks are not 

consistent across subjects because of anatomical variations 

among different brains. Furthermore, networks of the resting 

brain are not driven by any stimulus; hence, the series of 

changes do not follow any specific patterns, unlike task-

based fMRI. Identifying some common FC patterns is thus 

quite challenging. Earlier work by our group focused on FC 

variations of a seed voxel, in the somatosensory cortex with 

some specific areas of the resting brain [11]. To our 

knowledge the current work is the first to explore, cluster, 

and analyze the seed voxel based whole brain FC. We 

perform sliding window correlation (SWC)  [19] of a seed 

voxel with the rest of the brain in order to observe the 

dynamics of FC. Image processing and pattern recognition 

techniques are utilized here to characterize FC variations.  

We use k-means clustering [20] with Euclidean distance  to 

cluster the patterns. Clustering validation is performed using 

Dunn’s index [21].  

II. MATERIALS AND METHODS  

A. Animal Preparation  

In this study, we re-analyzed data acquired for another 
experiment in which rats were used as test subjects. A 
detailed description of data acquisition is available in [22].  In 
the sequence of these experiments, 2% isoflurane [23] is 
mixed with 1:1 oxygen and room air. Each rat was initially 
anesthetized with this mixture.  The heart rate and the blood 
oxygen saturation percentage were recorded with a pulse 
oximeter placed on the rear left paw.  
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A rectal thermometer, along with an adjustable warm 
water pad, was used to monitor the body temperature at 
approximately 37° C (±0.5° C). The respiratory rate was also 
monitored by using a pressure-sensitive pad placed under the 
rat’s chest. The rat was then placed in the MRI cradle, and 
the head was secured with a bite bar and ear bars.   

After the setup was completed, each rat was given a 
subcutaneous bolus injection of 0.025 mg/kg 
dexmedetomidine (Dexdomitor, Pfizer, Karlsruhe, Germany).  
Five minutes after the bolus, isoflurane was discontinued, and 
15 minutes later, a subcutaneous infusion of 0.05 mg/kg/hr 
dexmedetomidine (a sedative medication which is similar to 
natural sleep in its effect on brain activity) was initiated to 
maintain anesthesia for the duration of the experiment [24].  
Approximately 80 minutes after the initial dexmedetomidine 
bolus, the infusion dosage was increased to 0.15 mg/kg/hr 
(3x initial infusion rate) for maintaining anesthetic depth, in 
accordance with the protocol established in [25] . While the 
use of anesthesia certainly affects neural activity, it is a 
standard practice for functional imaging studies in animals 
[25, 26] to mitigate the stress the animals would otherwise 
experience from being restrained. The validity of this 
approach is supported by studies in humans that have shown 
that functional networks are relatively conserved across 
wakefulness, sleep, and anesthesia [27]. 

B. Image Acquisition and Preprocessing 

All images were acquired on a 20 cm bore 9.4 T Bruker 
BioSpec magnet interfaced to an AVANCE (Bruker, 
Billerica, MA) console. An actively decoupled imaging 
protocol was used, with a 7 cm volume coil for RF 
transmission and a 2 cm surface coil for signal reception. A 
FLASH image [28] was acquired in three planes and a single 
slice was positioned over the primary somatosensory cortex 
based on known anatomical markers. Manual shimming was 
conducted on this slice to obtain maximum SNR and spatial 
homogeneity.  

Each resting state scan was acquired using a single-shot 
gradient echo EPI sequence [29] with the following 
parameters:  Repetitions = 1000, TR = 500 ms, TE = 15 ms, 
total scan time = 8 min 20 s, slice thickness = 2 mm, FOV = 
2.56 cm × 2.56 cm, matrix size = 64 × 64.  Approximately 10 
resting state scans were acquired from a total of 7 animals for 
the original study.  For the analysis performed in this work, 
we used the same 3 resting state scans each from the same 4 
rats examined in [11].  For the period when the scans were 
acquired for this analysis, the average heart rate was 300-310 
bpm, respiratory rate was 70-80 breaths/min, oxygenation 
was 98-99%, and body temperature was 37-37.5°C. 

All fMRI data processing and analysis were performed 
using code written in MATLAB (MathWorks, Natick, MA).  
The time trajectory from each voxel was linearly detrended, 
followed by finite impulse response bandpass filtering  
between 0.01 Hz and 0.3 Hz based on previous work 
demonstrating correlation over a wide range of frequencies in 
the anesthetized rats [9, 30].  Data points were removed from 
the beginning of each scan to reduce any transient effects of 
scanner instability, and again after filtering to reduce filter 
effects, leaving a total of 800 images for each scan. Three 
such scans of each rat was taken and concatenated after 
motion compensation.  

C.  Voxels’ time series 

Scans from four rats were used to compute the FC of the 

seed voxel in the sensorimotor cortex. Each scan consisted of 

2,400 scanned images (1,200 sec, sampling rate = 2 

scans/sec). In earlier studies, a voxel is represented by one 

pixel, and the FC of the seed voxel with only a few other 

voxels were computed because of an extensive computational 

complexity. We reduce the computation by representing 3x3 

pixel blocks as one voxel in each 2D scanned image, shown 

as squares in Fig. 1, with their mean assigned as the intensity 

level of the new voxel. Results of a similar analysis with 2x2 

pixel blocks show almost the same functionally connected 

areas, but at a cost of almost doubling the computation. 

Voxels are numbered from left to right and from top to 

bottom, and the time series of a voxel is defined as the 

intensity sequence of that voxel for the whole scan time. The 

number of time series is equal to number of voxels in a brain 

image. Whole brain variable FC of seed voxel in the left 

primary somatosensory cortex (LS1) is computed. Seed 

voxel’s location is identified by visual comparison with the 

Paxinos rat brain atlas [31]. 

 

D.  Dynamic Functional Connectivity 

Correlation analysis is a widely used method to compute 

similarity between two time series. SWC (sliding window 

correlation) [19] computes correlations of windowed time 

series. In this study SWC is used to capture the dynamics of 

variable FC. SWC was performed using a window with a size 

of 100 images (50 sec) and an offset of one image (0.5 sec). 

There are no standards for the chosen window size and offset. 

As such, the window size and offset here were taken to be 

comparable to those used in previous studies [11, 16]. 

A voxel is functionally connected with the seed voxel if 

0.2 ≤  |SWC| ≤ 0.99999  (sample size = 100, p<0.03, where p 

is the p-value calculated for the lowest given level of 

correlation and sample size).  Fig. 1 shows a block diagram 

of the whole process. The SWC of the seed voxel’s time 

series (yellow rectangles) and other voxels’ time series (red 

rectangles) is computed. Patterns of dynamic FC at intervals 

of 100 scans (50 s) are plotted, and stored in a matrix form. 

Fig. 1. Block diagram (Left to right: Sliding window correlation, 
Functional connectivity maps, Binary transformed matrices of FC, 

One cluster) 
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E.  Feature vectors and k-means clustering  

In order to reduce the clustering computation, we exploited 
the fact that all voxels are either functionally connected with 
the seed voxel or not. Functional connectivity matrices are 
binary transformed by replacing correlations of the 
functionally connected voxels by a value ‘1’ and other 
correlations by ‘0’. Each binary transformed matrix is 
converted to a row vector to be used as a feature vector for k-
means clustering. For better visualization of variations in FC, 
clusters are displayed as images with varying colors. The 
clustering of these patterns allows us to identify repeated 
patterns in the dynamic FC. Examples of binary transformed 
matrices are shown in Fig.1.  

k-means clustering is an unsupervised clustering technique 
that automatically partitions an n-point data set into k 
clusters, where k < n [32]. It proceeds by selecting k initial 
cluster centers and then iteratively changing each cluster’s 
members and centers, till the clusters are stable. It minimizes 
the within-cluster sum of squares [33] by formula in (1). 

    arg min
𝑠

∑ ∑ || 𝑥𝑗 −  𝜇𝑖||
2

𝑥𝑗 𝜖 𝑠𝑖

𝑘
𝑖=1         (1) 

 

where 𝐒 =  { S1, S2, … Sk}  is the cluster space of member 

clusters, 𝜇𝑖 is the mean of the feature vector in each member 

Si and 𝐱 = { x1, x2, … . xn}  are feature vectors of functional 

connectivity to be clustered. 

F.  Dunn’s index 

Cluster validation is done using Dunn’s index [21], since 

it aims at the identification of “compact and well separated 

clusters” [33]. Dunn’s index, DIm, for m clusters is given in 

(2). 

 

𝐷𝐼𝑚 =  min
1≤𝑗≤𝑚

{ min
1≤𝑖≤𝑚,𝑗≠𝑖

{
𝛿(𝐶𝑖  ,𝐶𝑗 )

max
1≤𝑘≤𝑚

∆𝑘 
}}     (2) 

 

where 𝛿(𝐶𝑖  , 𝐶𝑗 )  is the inter-cluster Euclidean distance 

between clusters Ci and Cj., ∆𝑘 = max d(x,y), and d(x,y) is the 

Euclidean distance between the points x and y in cluster Ci.  

III. RESULTS AND DISCUSSION 

Results of dynamic network analysis of all four rats 
showed similar variability in the FC, and a detailed result of 
one of them is shown in Fig. 2. From Fig. 2, we observe the 

clustering of the FC patterns of LS1 [11] with the whole 
brain. In order to examine the degree of variability in the FC 
patterns, we divide them into groups with different numbers 
of clusters. Rows in Fig. 2 illustrate clustering when the 
number of clusters was reduced from six to three.  The extent 
of the color variation depicts the variability of the FC patterns 
in a cluster. The dark red part in a cluster represents the 
regions found in all patterns included in that cluster denoting 
the areas of the brain that are always functionally connected 
with the chosen seed voxel.  Changes of color to lighter 
shades of red, gray, and then to green indicate a decrease in 
the number of times an area is functionally connected with 
the seed voxel, thus representing the variations in FC. 

Certain significant observations can be made from Fig. 2, 
about the FC of LS1. Irrespective of the number of clusters 
the patterns are divided into, there are certain areas in the 
brain which are always functionally connected with the seed 
voxel (deep dark red parts in all clusters), while other areas 
show variation in FC. The persistent portions often consist of 
symmetrical areas in the left and right hemispheres and is in 
good agreement with previous studies [11], The variable 
portions occur less often and show that connectivity 
sometimes extend to deeper medial areas outside the cortex. 
It is also observed that color variations are dominant in 2 
clusters, which indicates that most of the patterns are in these 
clusters, and the extent of the FC variation is not large. 
Another notable point in Fig. 2 is the fact that changing the 
number of clusters does not affect the larger clusters, until the 
number of clusters is reduced by a half (from six to three). 

Fig. 3 presents the bar graph of FC patterns distribution 
for the clusters shown in Fig. 2, averaged over all the 4 rats. 
For averaging, FC patterns of all rats are divided into a 
chosen number of clusters, with the most common cluster in 
each rat given the lowest number.  The number of 
occurrences in the most common cluster is then averaged 
across rats.  The process is repeated for each of the 
remaining clusters. It can be observed from Fig. 3, that a 
large number of patterns lies within a few clusters (clusters 1 
and 2) and changing the number of clusters does not 
significantly affect the membership of these clusters. 
Furthermore, decreasing the number of clusters resulted in 
merging of clusters containing a smaller number of patterns 
(six vs. three clusters), illustrating that these patterns are 
closer to each other than the patterns in bigger clusters. This 
observation may possibly indicate that at certain times, the 
variations in brain networks repeat partially, and that these 
repetitions occur frequently. 
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Fig. 2. Clustered patterens of left primary somtasensory cortex (LS1) 

functional connectivity with whole brain. Row one: six clusters, Row 

two: five clusters, Row three: four clusters, Row four: three clusters 

 

Fig. 3.  Functional connectivity (FC) patterns districution, averaged 

over all rats, for varying number of clusters 
 

 

concate
s
ixClustersHamming

m
m101105

L
SI

time = [0] seconds

deep red = 1

5 10 15 20 25 30 35

5

10

15

20

25

concate
6
ClustersEuclidean

m
m101105

L
SI

time = [50  150  250  400  650  750  800  850] seconds

deep red = 8, red = 7, light red = 6, tea pink = 5, baby pink = 4 grey = 3 light green = 2olive green = 1

5 10 15 20 25 30 35

5

10

15

20

25

concate
6
ClustersEuclidean

m
m101105

L
SI

time = [300   350   500  1050  1150] seconds

deep red = 5, red = 4, light red = 3, tea pink = 2, baby pink = 1

5 10 15 20 25 30 35

5

10

15

20

25

concate
6
ClustersEuclidean

m
m101105

L
SI

time = [100   550   700  1000] seconds

deep red = 4, red = 3, light red = 2, tea pink = 1

5 10 15 20 25 30 35

5

10

15

20

25

concate
6
ClustersEuclidean

m
m101105

L
SI

time = [200   450   600  1100] seconds

deep red = 4, red = 3, light red = 2, tea pink = 1

5 10 15 20 25 30 35

5

10

15

20

25

concate
6
ClustersEuclidean

m
m101105

L
SI

time = [900  950] seconds

deep red = 2, red = 1

5 10 15 20 25 30 35

5

10

15

20

25

concate
4
ClustersEuclidean

m
m101105

L
SI

time = [150   200   250   400   450   600   750   800  1100] seconds

deep red = 9, red = 8, light red = 7, tea pink = 6, baby pink = 5 grey = 4 light green = 3 olive green = 2

5 10 15 20 25 30 35

5

10

15

20

25

concate
4
ClustersEuclidean

m
m101105

L
SI

time = [300   350   500  1050  1150] seconds

deep red = 5, red = 4, light red = 3, tea pink = 2, baby pink = 1

5 10 15 20 25 30 35

5

10

15

20

25

concate
4
ClustersEuclidean

m
m101105

L
SI

time = [0   50  650  850] seconds

deep red = 4, red = 3, light red = 2, tea pink = 1

5 10 15 20 25 30 35

5

10

15

20

25

concate
4
ClustersEuclidean

m
m101105

L
SI

time = [100   550   700  1000] seconds

deep red = 4, red = 3, light red = 2, tea pink = 1

5 10 15 20 25 30 35

5

10

15

20

25

concate
4
ClustersEuclidean

m
m101105

L
SI

time = [900  950] seconds

deep red = 2, red = 1

5 10 15 20 25 30 35

5

10

15

20

25

concate
4
ClustersEuclidean

m
m101105

L
SI

time = [50  150  250  400  450  750  800  850] seconds

deep red = 8, red = 7, light red = 6, tea pink = 5, baby pink = 4 grey = 3 light green = 2olive green = 1

5 10 15 20 25 30 35

5

10

15

20

25

concate
4
ClustersEuclidean

m
m101105

L
SI

time = [200   300   350   500   600  1050  1100  1150] seconds

deep red = 8, red = 7, light red = 6, tea pink = 5, baby pink = 4 grey = 3 light green = 2olive green = 1

5 10 15 20 25 30 35

5

10

15

20

25

concate
4
ClustersEuclidean

m
m101105

L
SI

time = [0  650  900  950] seconds

deep red = 4, red = 3, light red = 2, tea pink = 1

5 10 15 20 25 30 35

5

10

15

20

25

concate
4
ClustersEuclidean

m
m101105

L
SI

time = [100   550   700  1000] seconds

deep red = 4, red = 3, light red = 2, tea pink = 1

5 10 15 20 25 30 35

5

10

15

20

25

concate
E
uclidean

m
m101105

L
SI

time = [0   100   150   200   250   300   500   700   800   900  1000  1100] seconds

deep red = 12, red = 9, light red = 8, tea pink = 7, baby pink = 6 grey = 5 light green = 4 olive green = 3

5 10 15 20 25 30 35

5

10

15

20

25

concate
E
uclidean

m
m101105

L
SI

time = [50   400   550   600   650   850  1150] seconds

deep red = 7, red = 6, light red = 5, tea pink = 4, baby pink = 3 grey = 2 light green = 1

5 10 15 20 25 30 35

5

10

15

20

25

concate
E
uclidean

m
m101105

L
SI

time = [350   450   750   950  1050] seconds

deep red = 5, red = 4, light red = 3, tea pink = 2, baby pink = 1

5 10 15 20 25 30 35

5

10

15

20

25

984



  

IV. CONCLUSION  

This study identifies the need to understand the changes 

occurring in FC networks of a rat’s resting brain. Varying 

similarities between different regions in a brain are captured 

by using SWC with the SWC matrices binary transformed, 

and converted to images to get a better visual understanding 

of FC. These FC patterns are clustered together using k-

means. We conclude that while FC in the resting brain in the 

rat is a constantly changing phenomenon, the majority of the 

FC patterns are similar to those of the steady-state 

connectivity obtained from minute-long scans. The variable 

portion of the patterns accounts for far less of the scan. 

Future work, applying this technique to the more complex 

human brain, should exhibit a richer repertoire of states than 

what are observed here in the sedated rodents.  
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