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Abstract—The 2 and 6-minute walk tests (2-6MWT) are used 

by rehabilitation professionals as a measure of exercise 

capacity. Our research has produced a new 2-6MWT 

BlackBerry smartphone application (app) that can be used to 

run the 2-6MWT and also provide new information about how 

the person moves during the test.  

The smartphone is worn on a belt at the lower back to 

record phone sensor data while walking. This data is used to 

identify foot strikes, calculate the total distance walked and 

step timing, and analyze pelvis accelerations. Information on 

symmetry, walking changes over time, and poor walking 

patterns is not available from a typical 2-6MWT and could help 

with clinical decision-making. 

The 2-6MWT app was evaluated in a pilot test using data 

from five able-bodied participants. Foot strike time was within 

0.07 seconds when compared to gold standard video recordings. 

The total distance calculated by the app was within 1m of the 

measured distance.  

 

Keywords—Acceleration, walking, distance estimation,  

pattern classification, wearable monitoring, rehabilitation. 

I.  INTRODUCTION 

In a healthcare environment, exercise capacity 

measurement is important for understanding a person’s 

current status and evaluating rehabilitation improvement. 

The 2 or 6 minute walk test (WT) is a common clinical tool 

for this purpose, where the distance walked in 2 or 6 minutes 

is measured. A smartphone with integrated sensors provides 

a platform for wearable biomechanical applications. 

Wearable analysis during the WT increases the available 

information derived from the test with minimal additional 

setup, thus providing clinically useful and immediate 

information for evaluating physical function and gait at the 

point of patient contact.  

A. Wearable-Sensor Based Step Detection and Gait 

Analysis 

Wearable sensors, such as gyroscopes, pressure sensors, 

and accelerometers, can be attached to a person’s body to 

record motion. In a clinical environment, wearable sensors  
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allow a person to walk freely at a self-selected and natural 

pace, which is more representative of daily living than some 

laboratory conditions [4].  

Many studies have used accelerometers for gait detection 

and computing parameters such as cadence, step timing, and 

symmetry [2], [4], [5]. A wide range of sampling 

frequencies has been used to record human movement. For 

counting steps or monitoring energy expenditure, the 

sampling frequency is not critical and can be lower than  

10 Hz [1], [6]–[8]. However, when accelerometers are used 

for more complex gait pattern analysis, sampling rates range 

from 50-200 Hz [2], [9].  

Actibelt
®
 is a commercial product in the complex analysis 

category, using a 3D accelerometer sampling at 100Hz. This 

accelerometer is incorporated into a belt buckle to record 

accelerations close to the body’s centre of mass [10]. Several 

clinical tests have been programmed for Actibelt
®
, including 

the 6MWT. However, this requires the purchase and 

familiarization with specialized commercial equipment.  

Yang et al. achieved accurate foot strike detection using a 

25 Hz sampling rate, however detection was not fully 

automated since missed steps were added manually by the 

user through visual inspection of the acceleration plot and 

incorrectly identified steps were removed [2].  

Accelerometer data obtained during walking can be 

segmented into gait cycles [3]. A stride begins when one 

foot hits the ground and ends when the same foot hits the 

ground again, while a step begins with a foot strike and ends 

at the opposite foot strike. Many methods have been used to 

recognize gait patterns and count steps. The most commonly 

used signals for step detection are vertical acceleration and 

anterior-posterior acceleration, since both display prominent 

peaks at each step [9]. Each signal’s cyclical nature allows 

step identification using the peak amplitude and the time 

between each peak or zero crossing. 

 Amplitude can be used to set a minimum threshold that, 

when surpassed, identifies a step [6], [8], [9], [11], [12]. The 

time between each step is often used to set a time-frame 

during which a second step is not expected (“locking 

period”) [7]–[9], [13]. The manner in which peaks are 

identified and the criteria used to identify steps differs from 

study to study. 

Marschollek et al. [5] compared various step counting 

algorithms on healthy and mobility-impaired participants. 

Algorithms that adapted to the periodic acceleration patterns, 

rather than relying on a-priori knowledge of the gait signals, 

were more adaptable to mobility-impaired participants. 

None of the algorithms performed particularly well, with 

error rates higher than those reported by the original 

researchers in the literature. More complex pattern 
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classification algorithms were recommended to recognize 

steps in samples with differing motion characteristics. 

 

B. Calculating Distance Walked 

Distance traveled can be found through double integration 

of accelerometer measurements. However, this requires 

careful calibration, extensive computation, and works best 

when the accelerometer is mounted low on the person’s 

body (i.e., on the foot)[14] .  

Distance may also be estimated by stride length, using 

empirical relations with other measurements such as leg 

length, change in acceleration, and step frequency. The 

estimated stride length is multiplied by the number of strides 

to determine the distance traveled. Empirical relationships 

from various studies, such as the Weinberg algorithm, rely 

on calibration to the individual from experimental walking 

data [14]. This requires leg length or subject height for 

inverse pendulum models [7], [15] or determination of 

constants through walking trials [11], [14].  

Mean step length can be reliably estimated when the 

distance walked is known [16]. Since the 6MWT is 

performed on a track of known length, the mean step length 

combined with the number of steps detected is a feasible 

way of estimating the distance walked on the last length. 

The WT is a simple test that requires minimal equipment 

and is implemented regularly to evaluate a person’s physical 

capacity. With the emergence of multiple sensors in 

smartphones, these wearable computing platforms can be 

used to easily and quickly provide more information on how 

the person moves. This information could lead to a better 

understanding of the person’s functional status and thereby 

improve clinical decision-making. 

The purpose of this study was to evaluate the performance 

of the WT smartphone app for detecting foot strike and 

calculating distance walked. The study also investigated 

other relevant biomechanical parameters that can be 

extracted from smartphone sensors and used in a clinical 

environment. 

II. METHODS 

A. Data Collection 

A pilot study was conducted with five able-bodied 

participants. Each person performed one 2-Minute Walk 

Test trial at The Ottawa Hospital Rehabilitation Centre 

(TOHRC).  

Participants walked back and forth along a 25m section of 

a hallway, covering as much distance as possible in 2 

minutes. Each 25m length covered is referred to in this paper 

as a “walkway”. Some people were asked to stop during a 

walkway to evaluate the app’s ability to detect this event. At 

the end of the test, the distance walked on the last walkway 

was measured using measuring tape and recorded on a data 

sheet. 

Before testing, a belt with a rear pocket was secured 

around the person’s waist so that the pocket was at the 

middle of the pelvis. A Blackberry Z10 smartphone was 

placed upright in this rear pocket, facing outward. 

Accelerometer, gyroscope and magnetometer data were 

sampled on the Z10 at approximately 50Hz, using the 

TOHRC Data Logger [17]. 

Every trial was video recorded using a separate 

BlackBerry 9900 smartphone. Foot strikes, number of steps 

counted, turns, and contextual information were extracted 

from the digital video as a gold-standard comparator. 

Sensor data were imported into a custom Matlab program 

to calculate outcome measures. These measures were 

compared with the gold standard outcomes. 

B. Primary Outcome Measures 

The following parameters were calculated from sensor 

data: total distance walked, total number of steps, number of 

steps per length, average (AVG), standard deviation (SD) of 

cadence, AVG, SD of step time (left and right steps), AVG, 

SD of stride time, and step time symmetry (left and right 

steps). 

Cadence was calculated from the number of steps per 

walkway time, disregarding steps during turns. Symmetry 

was the difference between consecutive left and right step 

times, divided by the bilateral average [4]. 

C. Data Processing and Algorithm 

1) Turns 

For the 2 minute walk test, the person walks back and 

forth. Therefore, turns must be identified to accurately 

divide the data into walkways. These walkways were 

analyzed separately and steps during turns, which did not 

contribute to the distance walked, were not counted.  

Turns were identified using the BlackBerry azimuth signal. 

This signal automatically corrects itself to stay between 0 

and 360º, which causes rapid changes in magnitude (Figure 

1). This was corrected in software before detecting turns.  

 
Figure 1: Raw and corrected Azimuth signals (turn highlighted) 

A turn was detected if a change of more than 100º in 

azimuth occurred in a 3 second window. The turn duration 

was defined as the azimuth signal with a SD greater than 10º 

per 1 second data section. These were reliable ranges for 

turn detection at different walking speeds. 
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2) Step Detection 

Steps were detected using Anterior-Posterior (AP) linear 

acceleration, since peaks in the forward signal were found to 

coincide with foot strike event [18]. The signal was filtered 

using a fourth-order zero-lag Butterworth low pass filter 

with cutoff frequency of 6 Hz, since 99.7% of walking 

signal power is contained below 6 Hz [19]. 

The most reliable methods for accurate foot strike 

detection involved detecting acceleration signal peaks, 

typically with accelerometer sampling rates in the range of 

100Hz [9], [20]. In this study, a combination of a locking 

period and peak detection were used, with a 50Hz sampling 

rate. First, the step duration was calibrated using a 5 second 

walking sample from the beginning of the trial. The length 

between consecutive positive zero crossings in the filtered 

AP acceleration signal were measured.  

Since the AP signal sometimes fluctuated from a zero 

baseline, experimentally determined thresholds were used to 

select the max or mean step duration, and what fraction of 

this duration to use as the locking period. Initial thresholds 

were also set to detect the first and last steps in a length, 

since these tended to have lower peak values than other steps 

because the person is starting up from a stop or slowing 

down for a turn. These thresholds were calculated by 

subtracting mean from maximum in the 5 second sample. 

The filtered AP acceleration was searched using a moving 

window with size based on the step duration. Only one step 

could be detected in each window, and was identified as the 

maximum peak in AP linear acceleration. Different people 

produced AP signal peaks of different amplitude. In 

addition, these peaks could be sharp and short, rounded and 

longer, or asymmetrical, depending on the person’s gait 

pattern. Thus, step identification was based on signal shape 

similarity to other identified steps in the same walk, rather 

than pre-assigning thresholds. The minimum value within 

the window, before and after each peak, was found. A peak 

was only identified as a step if the difference between the 

peak and the minimum on either side were both within 35% 

of the same calculated values from the previous step.  

If the duration between 2 consecutive steps was greater 

than 1.75 times the previous step duration, the filtered AP 

acceleration signal between the 2 steps was searched again 

for missed steps using different criteria. If an AP signal peak 

within this range matched the timing pattern of previous 

steps or if a vertical acceleration peak passed a threshold, a 

step was identified. If no missed steps were identified, the 

period was considered a stop and the data were excluded.  

Foot strike time was identified as the maximum peak in the 

raw AP linear acceleration within the neighborhood of each 

detected step. The raw signal had occasional gaps in time 

and also flat-lined for small sections. These sections were 

detected and ignored. If one of these sections occurred 

where a step was expected, step occurrence was estimated 

using the walkway’s average step time. 

3) Left and Right Steps 

Left and right steps were identified using the LR linear 

acceleration. This signal was filtered using a fourth-order 

zero-lag Butterworth low pass filter with cutoff frequency of 

1 Hz, as shown in Figure 2. Lower cutoff frequencies greatly 

reduce signal noise, but can distort the signal [19]. Since the 

filtered LR signal was used to identify the person’s direction 

of motion during a step, this distortion was acceptable. 

 
Figure 2: Filtered acceleration signal with left and right step identification 

 The LR signal fluctuated from a zero baseline, with left 

steps identified as concave (person accelerated to the right 

during swing phase after a left step) and right as convex. At 

each detected step, the tangent to the filtered LR linear 

acceleration signal was calculated at 25% of the step after 

foot strike (i.e., peak LR acceleration). If the tangent was 

above or below the curve, the signal was considered concave 

or convex, respectively. A pattern was identified and used to 

fill in the steps that were not identified as left or right, as 

well as to correct double counts. This information was used 

to calculate the primary outcome measures. 

4) Distance walked 

The distance walked on the last length was calculated by 

multiplying the number of steps by the average step length 

of the previous walkway. If a stop was detected in the 

previous walkway, the average step length of the third last 

walkway was used. To ensure that the average step length 

used to calculate distance was similar to the step length in 

the last walkway, the ratio of mean step timing on the last 

walkway to the mean step timing of the second last walkway 

was calculated. If the ratio was less than 0.9 (i.e., more than 

10% increase in mean step time), the average step length 

was multiplied by this ratio, then by the number of steps to 

determine the distance walked. 

D. Data Analysis 

Foot strike times were compared to the gold standard 
video. Smartphone video was synchronized with the sensor 
data by the first accurately detected foot strike event. The 
total distance calculated was compared to the total distance 
measured. 
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III. RESULTS 

Foot strike time was within 0.07 seconds (i.e., within ± one 
video frame) when compared to the gold standard. The total 
distance calculated by the app was within 1m of the 
measured distance, as shown in Table 1. 

Table 1: Comparison of Measured and Calculated Distance 

Participant 
Total Distance (m) Difference  

(m) Measured Calculated 
1 200.69 200.71 0.02 

2 150.98 151.35 0.37 

3 164.57 164.84 0.27 

4 159.29 158.80 0.49 

5 192.66 193.33 0.67 

IV. DISCUSSION 

The 2 and 6 minute walk tests are used to evaluate physical 
capacity. These tests are administered periodically during a 
rehabilitation program to assess improvement. According to 
discussions with rehabilitation physiotherapists, a calculated 
distance within 1m of the actual distance is sufficiently 
accurate, since an improvement of less than 1m after 
rehabilitation is not considered clinically significant.  

The video was recorded at a frame rate of 30 frames per 
second. Since the real foot strike could have occurred one 
frame before or after the closest frame captured by the 
camera, a tolerance of 2 frames, or 0.07 seconds was allowed 
for step detection. Ten steps out of a total of 1116 steps for 
all 5 subjects were not identified within this tolerance, and 
these were a result of irregular signals or blurry video 
recordings. Stops and left and right steps were correctly 
identified when compared to video recordings.  

V. CONCLUSION 

Currently, the only measure obtained from the WT is the 
total distance walked during the time interval. With a 
minimal increase in setup time, the 2 or 6-minute Walk Test 
app provides quantitative biomechanical information that 
describes how a person moves and may provide a better 
understanding of the person’s functional exercise capacity 
and walking quality. 

The Blackberry Z10 smartphone, with a 50Hz sampling 
rate and sensors, was appropriate for the data acquisition 
task. This outcome should be repeatable for other smartphone 
platforms.  

The app’s additional information may be useful for 

physiotherapists and physiatrists when evaluating the results 

of therapy and guiding clinical decision-making. Research is 

currently under way to validate the app with a larger sample 

of able-bodied participants and with people receiving 

rehabilitation therapy. 
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