
  

 

Abstract— Current electronic noses, or e-noses, that employ 

insect odorant receptors (Ors) as their sensory front end are 

potentially limited by the fact that the Ors come from a single 

species. In addition, a realistic e-nose also demands low 

numbers of Ors at its sensory front end due to the difficulties of 

receptor/sensor integration and functionalisation.  

In this work, we report the first investigations of a ‘Super E-

Nose’ that incorporates Ors from both the model organism 

Drosophila melanogaster fruit fly (DmOr) and the mosquito, 

Anopheles gambiae (AgOr). Furthermore, we report how an 

Artificial Neural Network (ANN), in the form of a hybrid 

double hidden layer Multi-Layer Perceptron (MLP), can be 

used to determine the optimal Ors that provide the best 

prediction performance in the classification of unknown 

odorants into their respective chemical class. 

Our findings demonstrate how 3-Or arrays consisting of 

DmOr only, AgOr only, or cross-species DmOr-AgOr 

combinations correctly classified all unknown odorants of the 

validation set. In addition, we report that all 3-Or combinations 

perform equally well as the complete 74 DmOr-AgOr array. 

Thus, the results of this work support further investigation into 

cross-species ‘Super E-noses’ coupled with hybrid MLPs for the 

classification of unknown odorants. 

I. INTRODUCTION 

An electronic nose or e-nose is a device used to detect 
odors and flavors. E-noses have an assortment of 
applications such as determining ripeness of fruit, detection 
of illegal contraband, and in medical diagnosis [1]. Such 
devices typically consist of an aroma delivery system, a 
chamber housing an array of sensors, a processing system for 
converting the chemical signals into a digital electrical 
signal, and a computer microprocessor [1-3]. The sensory 
array is an important component of the device as it must 
respond to a wide range of chemical classes and discriminate 
mixtures of possible chemicals. As insects are highly reliant 
on their olfactory senses for feeding, mating, and other 
behaviors [4], an e-nose that incorporates insect olfactory 
receptors could be a valuable alternative to the human nose, 
which is traditionally used. 
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Insects use their olfactory organs, the antenna and 
maxillary palp (Fig. 1), to identify a myriad of chemicals [2, 
4]. Covering the antennae and maxillary palps are hair-like 
sensilla which house Olfactory Receptor Neurons (ORNs) 
that encode qualitative, quantitative, and temporal 
information about odors. Odorant detection begins when 
airborne odors enter pores along the sensilla. Within the 
aqueous environment inside the sensilla, there are many 
odorant-binding proteins that solubilize and transport the 
odorants to receptors on dendrites of ORNs which extend 
into the lymph. Typical resting potential of ORNs is 
approximately -65mV [5] and with the activation of an 
appropriate odorant, an influx of Na

+
 and Ca

2+
 results in a 

positive (less negative) spike in membrane potential by about 
20mV. Such a change in membrane potential induces the 
propagation of an action potential to the antennal lobe, where 
input is modulated by interneurons and transmitted by 
projection neurons to higher brain regions for processing. 

 

Figure 1.  Electron micrograph of the A) Drosophila melanogaster [6] and 

B) Anopheles gambiae [7] antenna (arrowhead) and maxillary palp (arrow). 

Recording of spontaneous insect receptor responses to 
odors is made possible through the use of recombinant gene 
technology in which Odorant Receptors (Ors) are ectopically 
expressed in a mutant ‘empty’ Drosophila melanogastser 
ORN [8, 9]. A combinatorial model of odor coding [8] has 
been found in D. melanogaster [8] and in Anopheles 
gambiae [9] in which individual receptors responded to 
subsets of odorants and individual odorants activated subsets 
of receptors. In this work, we use Artificial Neural Networks 
(ANNs) in the form of a Multi-Layer Perceptron (MLP) as a 
signal processing backend of an e-nose to classify odorants 
by analyzing the information embedded in the neuronal 
firing rates of insect Ors. ANNs are a powerful tool for 
extracting essential features from data sets. The study of 
olfactory recognition presents highly complex relationships 
between the data and the classes they belong to and ANNs 
are a viable method used to predict and classify unknown or 
unseen odorants. 
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II. METHOD 

A. Data Used in the Study  

In this work, we utilize the spontaneous Or response data 
of the D. melanogaster obtained from the work of Hallem 
[8] and the A. gambiae spontaneous responses recorded by 
Carey [9]; spontaneous activity is quantified from the 
number of spikes recorded in 1 second of spontaneous 
activity [10]. Or recordings in both studies were obtained 
using a mutant ORN of D. melanogaster [8, 9]. The studies 
conducted by Hallem [8] and Carey [9] recorded Or 
responses to 108 and 110 odorants respectively. To 
investigate the application of a cross-species sensor, we 
identified the common odorants used in both studies. 
Consequently, the data used in this work consist of the firing 
rates of 24 D. melanogaster odorant receptors (DmOrs) and 
50 A. gambiae odorant receptors (AgOrs) in response to 34 
common odorants. These odorants fell into 5 distinct 
chemical classes (with the number of chemicals listed in 
parentheses): Acid (7); Ketone (5); Aromatic (6); Alcohol 
(9) and Ester (7). To enhance network learning [11], the data 
were preprocessed by zero-mean and normalization prior to 
feeding into the MLP system. 

B. Selection of ANN Architecture and Training Scheme 

In this work, we employ the Artificial Neural Network 
(ANN) architecture of a feed forward Multi-Layer 
Perceptron (MLP) [12-15]. Fig. 2 presents a simplified 
schematic of a double hidden layer hybrid MLP system. The 
odor response of the ORN array to an odorant is used as the 
input vector, which is fed into the input layer and subsequent 
layers. Through network training, the MLP system is able to 
provide generalizations of the data used [16]. This is 
achieved by using a supervised back-propagation learning 
scheme in which the weighting functions are adjusted at each 
time-step (epoch) to produce a progressively effective 
network. Back-propagation is known to perform ineffectively 
when a local minimum is present [17], thus a momentum 
function was applied to the system to address this issue [18]. 

Weighting functions of the network are represented by 
the hexagons in Fig. 2, and their initial values obtained from 
a symmetric Gaussian distribution with a zero mean and 
variance of unity. Small weighting functions were chosen to 
ensure optimization of the ‘weight’ decay regularizer, which 
enhances network generalization, and to prevent over-fitting 
of the MLP systems [12]. Together with a binary sigmoidal 
function at each layer, the weighting functions produce a 
network output: an output close to 1 was used to denote 
identification of a correct chemical class whilst an output 
close to 0 represents an incorrect class.  

To quantify the degree of network learning, a validation 
set is applied to the trained MLP system. This set is 
composed of a random set of 5 chemical odorant vectors 
collected from the 34 available odorants. For each sample of 
bootstrapping, the validation set was obtained by randomly 
selecting 10% of odorants from each chemical class. The 
numbers of odorants of each chemical class in the validation 
set were: Acid (1); Ketone (1); Aromatic (1); Alcohol (1) 
and Ester (1). The remaining 29 odorants were subsequently 

used for the corresponding bootstrapping training set sample. 
Final results of an MLP performance were obtained through 
bootstrapping methods so as to portray the variability of 
simulations and to provide more accurate estimates of 
predicted values [12, 13, 19]. We chose to repeatedly sample 
10,000 training and validation sets from the raw data for 
retraining and validation of the system [19-21]. 

 

Figure 2.  Schematic of a double hidden layer hybrid Multi-Layer 

Perceptron (MLP) used to class odorants into their chemical classes.  

Preliminary tests were performed wherein network 
learning ended based on fixed epochs or when the prediction 
error fell below a defined tolerance [22]. We found 200 
epochs presented satisfactory CPU run times and a 
satisfactory error prediction falling below the desired 0.01 
threshold.  

We have previously discovered that the quality of 
odorant classification relies heavily on a network’s size and 
structure [12, 13] as it inherently affects the network’s 
critical learning time and generalization capabilities [16]. By 
alternating the number of hidden layers used, the number of 
hidden neurons of the layer(s), and the MLP configuration 
(single or hybrid system), we were able to investigate the 
effect of using different MLP architectures and their 
subsequent classification performances. A hybrid MLP 
system is a set of independent single-output MLPs working 
in parallel and the number of MLPs in the series is 
determined by the number of classes present in the data set; 
in this work, 5 MLPs are used in the hybrid MLP system. 
Although investigating the different MLP architectures was a 
long and demanding process, determining the optimal MLP 
system is important due to its capability of extracting higher-
order information from a given data set to provide an 
improved classification performance [23]. 
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The performance difference between MLP architectures 
was based on the highest prediction accuracy of the 
validation odorant with the lowest prediction across the 
validation set. These values were obtained using k-fold 
cross-validation [24, 25], which allowed for an efficient 
simulation time while providing an improved accuracy of 
measuring classifier performance over the fixed validation 
method [12-15]. The results presented in this work were 
obtained from the optimal MLP architecture (Fig. 2). 

C. Analyzing Insect Odorant Receptor Combinations 

Due to the long and complicated process of developing 
and recording insect odorant receptors in vitro, it is desirable 
to have an e-nose that operates effectively with a low number 
of Ors. We investigate the changes in MLP performance 
when using a minimal set of Ors and propose the 
identification and use of an optimal combination of 3 Ors 
from the available 74 Ors. A bank consisting of all 64,824 
combinations was tested with the optimal MLP system. 
Different sequences of the same combination are not 
included and selection of a receptor does not occur twice in a 
given combination [12]. Similar to assessing the optimal 
MLP architecture, k-fold cross-validation was used to 
compare the performance between Or combinations and 
evaluated by the highest prediction accuracy of the 
validation odorant with the lowest prediction across the 
validation set.  

III. RESULTS 

From preliminary tests we found an optimal MLP 
architecture that produced the best performance: a double 
hidden layer hybrid MLP system with 90 neurons in the first 
hidden layer and 15 neurons in the second hidden layer (Fig. 
2). Such an MLP system is known to capture more of the 
complex relationships present in the data [12, 13, 15, 26] 
allowing for successful classification of unknown odorants.  

A threshold value was applied to quantify MLP learning. 
This value was determined by calculating the probability of 
choosing the correct class of a validation vector: 1/5 or 20%. 
With a 5% added safeguard, the 25% conservative threshold 
value was defined; the dotted horizontal line in Fig. 3 
illustrates this conservative threshold value. Successful 
classification is established when the calculated prediction of 
the validation odorant exceeds the conservative threshold 
value.  

In Fig. 3, we present the classification performance using 
the complete 74 DmOr-Agor array, the best 3 DmOr 
(DmOr85f, DmOr88a and DmOr98a), the best 3 AgOr 
(AgOr73, AgOr75 and AgOr76) and the best 3 DmOr-AgOr 
(DmOr9a, DmOr22a and AgOr67) combinations. We found 
that all 4 arrays successfully classified the validation vectors 
of all the chemical classes, surpassing the threshold value, 
including the worst possible case (lower error bar). Slight 
variation in mean prediction (%) of the validation vectors 
was observed between the 3 Or combinations (the higher 
prediction combination in brackets): Acid (DmOr), Ketone 
(DmOr and DmOr-AgOr), Aromatic (AgOr), Alcohol 
(DmOr and DmOr-AgOr) and Ester (DmOr-AgOr). 
Furthermore, the average prediction across the validation set 

was 64.6% for the 3 DmOr, 63.2% for the 3 AgOr and 
67.9% for the 3 DmOr-AgOr combination. Hence, the best 
performing 3-Or combination was found to consist of 2 D. 
melanogaster odorant receptors and 1 A. gambiae odorant 
receptor: DmOr22a, AgOr67 and DmOr9a.  

 

Figure 3.  Performance of the optimal hybrid MLP system when using the 

complete 74 DmOr-AgOr array, best 3 DmOr, best 3 AgOr and best 3 

DmOr-AgOr combination. The horizontal broken lines represent the 25% 

conservative threshold value that defines correct classification of an 

odorant of the validation set. Bootstrapping results comprise of the number 

of odorants on average surpassing the treshold, the worst possible (lower 

error bar) and best possible (upper error bar) case of classification. 

IV. CONCLUSION 

In this exploratory work, we used an Artificial Neural 
Network (ANN) in the form of a double hidden layer hybrid 
Multi-Layer Perceptron (MLP) for the classification of 
odorants based on the firing rates of Drosophila 
melanogaster odorant receptors (DmOrs) and Anopheles 
gambiae odorant receptors (AgOrs). Due to the long and 
complicated process of expressing and functionally 
characterizing insect odorant receptors (Ors) in vitro, we 
sought to use a minimal combination of Ors for ANN 
analysis. MLP classification using an optimal 3 Or 
combination, regardless of species, was found to perform 
equally well in predicting all 5 odorant chemical classes as 
the complete 74 DmOr-AgOr array. The 3 Or combinations 
tested were DmOr only, AgOr only, and a DmOr-AgOr mix, 
and all correctly identified all validation vectors. The best 
performing 3-Or combination was found to consist of 2 D. 
melanogaster odorant receptors and 1 A. gambiae odorant 
receptor: DmOr22a, AgOr67 and DmOr9a. Thus, the results 
demonstrate for the first time the viability of implementing 
cross-species Ors as the sensory processing system of a 
“Super E-nose”. We hope that these results will pave the way 
for future developments of ‘Super E-Nose Technology’ 
utilizing additional Or species, such as the Apis mellifera  
(honeybee) or Utetheisa ornatrix (polyphemus moth), and 
the creation of multi-species Or arrays. 
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