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Abstract— Deep brain stimulation (DBS) of Subthalamic
Nucleus (STN) is the best method for treating advanced
Parkinson’s disease (PD), leading to striking improvements in
motor function and quality of life of PD patients. During DBS,
online analysis of microelectrode recording (MER) signals is a
powerful tool to locate the STN. Therapeutic outcomes depend
of a precise positioning of a stimulator device in the target area.
In this paper, we show how a sparse representation of MER
signals allows to extract discriminant features, improving the
accuracy in identification of STN. We apply three techniques
for over-complete representation of signals: Method of Frames
(MOF), Best Orthogonal Basis (BOB) and Basis Pursuit (BP).
All the techniques are compared to classical methods for
signal processing like Wavelet Transform (WT), and a more
sophisticated method known as adaptive Wavelet with lifting
schemes (AW-LS). We apply each processing method in two
real databases and we evaluate its performance with simple
supervised classifiers. Classification outcomes for MOF, BOB
and BP clearly outperform WT and AW-LF in all classifiers
for both databases, reaching accuracy values over 98%.

I. INTRODUCTION

Parkinson’s disease (PD) is a progressive neurodegenera-
tive disorder characterized by symptoms caused by a loss of
dopamine, predominantly from the basal ganglia of the brain.
Loss of dopamine causes bradykinesia (slowness of move-
ment), tremor, muscular rigidity, shuffling gait and flexed
posture [1]. During the last years deep brain stimulation
(DBS) has become a routine method for the treatment of ad-
vanced Parkinson’s disease, leading to striking improvements
in motor function and quality of life of PD patients [2]. DBS
is a stereotactic guided neurosurgery where a stimulating
electrode is inserted into specific nuclei. In most cases,
the target structure is Subthalamic Nucleus (STN). In the
operating room, a team of specialists acquires and analyzes
physiological signals that represent the nonlinear electrical
activity generated by neurons. These signals are called mi-
croelectrode recordings (MER). MER signals analysis has
proved to be a powerful tool to locate basal ganglia, specially
the STN [3], [4]. Therapeutic outcomes depend of a precise
positioning of a stimulator device in the target area.

MER exhibit a strong non-stationary behavior. For this
reason, such signals require advanced methods for processing
and feature extraction. The Wavelet transform (WT) is widely
used to represent non-stationary signals, including MER
[5], [6]. In this approach, the recordings are transformed
to a time-scale space using some basis function (mother
wavelet). Then, one can obtain statistical descriptors (i.e,
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mean, variance, etc) from either approximation or detail
coefficients. However, this analysis still leaves a significant
gap to identify STN and others structures relevant in DBS:
Thalamus (Thal), Zone Incerta (ZI) and Substantia Nigra
pars reticulata (SNr). The problem with WT is that analysis
depends on having correlation between the selected basis
function and MER signals. This is not easy to achieve, due
to the highly oscillatory nature of neuronal background noise
of MER data.

A recent method for adaptive wavelet based on lifting
schemes (AW-LS) showed better results than WT [7]. Al-
though AW-LS is able to identify the STN with good
accuracy, it is possible to get more discriminant features
through sparse coding of MER. Sparse coding is a set
of unsupervised methods with over-complete basis which
represent data efficiently. Here, we define sparsity as having
few non-zero components or having few components not
close to zero. The idea behind sparse coding methods is
to represent signals using a redundant set of vectors called
atoms [8]. These atoms are obtained using a larger set of
basis functions, called dictionary [9]. There is a great num-
ber of available dictionaries: Wavelets, steerable wavelets,
segmented wavelets, Gabor dictionaries, multiscale Gabor
dictionaries, wavelet packet, cosine packets, chirplets and
warplets [10]. An intuitive advantage of sparse coding is that
this approach collects the relevant information of the signals
into a compact set of coefficients. Therefore, it is easier to
extract discriminant features to identify the STN during DBS.
Another interesting ability of sparse coding methods is the
merging of two or more dictionaries. This is very useful,
because a representation with only a dictionary may omit
intrinsic properties from MER signals.

In this paper, we show that sparse coding of MER signals
obtains a significant improvement in identification of STN
during DBS applied in Parkinson’s disease patients. We apply
three different methods to represent MER signals, namely,
Method of Frames (MOF), Best Orthogonal Basis (BOB)
and Basis Pursuit (BP). Inside of each method, we merge two
dictionaries: Wavelet Packet and Cosine Packet. We compare
the techniques proposed here, with classical methods for
signal processing like Wavelet Transform (WT) and adaptive
Wavelet with lifting schemes (AW-LS). We apply each
processing method in two real databases with two classes
(STN and Non-STN), and we evaluate its performance with
simple supervised classifiers. Classification outcomes for
MOF, BOB and BP clearly outperform to WT and AW-LF
in all classifiers for both databases, reaching accuracy values
over 98%.
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Fig. 1. Example of a MER signal from Subthalamic Nucleus (STN). This
recording belongs to DB-UTP and it is sampled at 25 kHz

II. MATERIALS AND METHODS

A. Databases

The first MER database comes from Universidad Tec-
nológica de Pereira (DB-UTP) and includes recordings of
surgical procedures in patients with Parkinson’s disease,
whose ages are between 55±6 (four men, and two women).
All the patients signed an informed consent form. Micro-
electrode recordings were obtained using the ISIS MER
system (Inomed Medical GmbH). MER signals were labeled
by neurophysiology and neurosurgery specialists from the
Institute of Epilepsy and Parkinson of the Eje Cafetero,
located in the city of Pereira, Colombia. In total, there
are 600 neural recordings divided in two classes: 300 sig-
nals from Subthalamic Nucleus (STN), and 300 signals
from other brain structures (Thalamus-Thal, Zone Incerta-
ZI, Substantia Nigra reticulata-SNr). Each record lasted a
second with sampling frequency of 25 kHz and 16-bit of
resolution. Figure 1 shows an example of a MER signal from
Subthalamic Nucleus (STN).

The second database belongs to Universidad Politécnica
de Valencia (DB-UPV). DBS signals were obtained in the
General University Hospital of Valencia, Spain, and labeled
by specialists in neurophysiology and electrophysiology. The
medical equipment used for data acquisition was the Lead-
PointTM Medtronic (Medtronics Functional Diagnostics).
Each signal is a second long, sampled at 24 kHz. In total,
there are 240 recordings coming from four patients: 120
recordings belong to STN and 120 recordings come from
other brain regions.

B. Sparse representation with over-complete dictionaries

The aim of sparse coding is to find a set of basis vectors
(atoms) φi such that, a signal s can be represented as a
linear combination of these atoms. The full set of waveforms
{φi}n

i=1 is called the dictionary Φ. Given a dictionary Φ and
a set of coefficients αi, we can construct a decomposition of
the signal s as [10]:

s =
n

∑
i=1

αiφi (1)

Since the decomposition given by equation (1) is non-
unique, this representation allows adaptivity, sparsity and

merging of dictionaries. Sparsity is achieved when the num-
ber of necessary atoms n is minimized over all possible
representations [9]. Several methods have been proposed in
the state of the art for signal decomposition using over-
complete dictionaries. We apply three approaches: Method
of Frames (MOF) [11], Basis Pursuit (BP) [12] and Best
Orthogonal Basis (BOB) [13]. In each method, we merge the
wavelet packet dictionary and the cosine packet dictionary
to represent the MER signals. We select these dictionaries
using cross-validation.

C. Method of Frames (MOF)
The MOF [11] selects a solution where coefficients αi

minimize the l2 norm:

min‖ααα‖2 , s.t Φααα = s (2)

The above formulation corresponds to a quadratic pro-
gramming (QP) problem, which has an unique solution. It is
denoted like ααα†. MOF generates low sparsity, because each
atom that has nonzero inner product with the signal is a
member of the solution. The method finds the coefficients αi
closest to the origin of a subspace Ep formed by all feasible
solutions of equation (2). The optimal coefficients ααα† can be
calculated using a system of linear equations:

ααα
† = Φ

†s,

where matrix Φ† is the generalized inverse of Φ:

Φ
† = Φ

>
(

ΦΦ
>
)−1

D. Basis Pursuit (BP)
Basis Pursuit finds the coefficients αi that minimize the l1

norm [12]:

min‖ααα‖1 , s.t Φααα = s (3)

Unlike MOF, BP is a method that preserves a high degree
of sparsity in the representation. Minimization of l1 norm
implies a considerable number of zero coefficients. We can
associate the optimization problem established in equation
(3) with a linear programming (LP) problem. The standard
form of a LP problem is given by:

min c>x, s.t Ax = b, x≥ 0 (4)

Using (4), we can reformulate the optimization problem of
(3) in standard LP form, making the following assignments:

A↔ [Φ,−Φ]

b↔ s
c↔ [1, ...,1]>

x↔ ααα

The problem proposed in (3) is solved with convex opti-
mization. BP-Simplex and BP-Interior are the most common
algorithms for BP [10].
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Fig. 2. Methodological framework: we process the MER signals with sparse
coding methods to obtain two decomposition levels. Then, we extract eight
features applying statistical descriptors over both representation sets. Finally,
we validate the proposed methods through basic classifiers.

E. Best Orthogonal Basis (BOB)
Some dictionaries Φ (i.e Wavelet packet and Cosine

packet) have special properties that allow the construction
of orthogonal bases. In [13] the authors propose a non-
linear transformation with orthogonal adaptive bases. This
method is robust to noise and selects the best basis B among
several potential orthogonal bases. BOB finds the best basis,
minimizing the entropy E of B:

min{E (B) : B⊂Φ} (5)

BOB has sparsity, when the signal has a sparse represen-
tation in the subspace formed by the orthogonal bases.

F. Feature Extraction
Methodological framework is illustrated in figure 2. We

apply MOF, BP and BOB to MER signals. Then, we calcu-
late 4 statistical descriptors (maximum value, energy, mean
and kurtosis) from two representation sets αi,p, (p = 1,2).
For each MER signal, we obtain a feature vector x ∈ R1×8.

G. Learning algorithms and Validation
We test the proposed methods for MER signals rep-

resentation with standard supervised classifiers: a Naive
Bayes classifier with shared and different covariance matrix
per class (LDC,QDC); and a K-nearest neighbors (KNN)
algorithm with K = 1 and K = 3 (KNN1, KNN3). The
reader can find the full theory of both learning algorithms
in [14]. For both databases, we evaluate the accuracy in the
identification of STN and a measurement of true positive
rate (TPR) using the area under the curve (AUC) with ROC
analysis. We perform two experiments. First, we use the 50%
of each database (300 signals from DB-UTP and 120 signals
from DB-UPV) for training the learning algorithms and we
test the generalization capability using the remaining 50%
of the data. Second, we mix DB-UTP and DB-UPV in a
single database and we follow the same procedure of the
first experiment. The experiments for each method and each
classifier are performed 100 times, taking random sets for
training and validation. To select the best model, we compare
average performances between MOF, BP and BOB with a
Kruskal-Wallis test [15].

TABLE I
COMPARISON OF ACCURACY (% IN STN IDENTIFICATION) FOR

DIFFERENT METHODS PROPOSED

Method Classifier DB-UTP DB-UPV UTP+UPV
WT LDC 80.5±1.3 90.3±1.4 73.9±1.1
WT QDC 89.7±1.0 90.4±1.4 79.4±1.1
WT KNN-1 93.5±0.9 93.8±0.7 90.5±0.5
WT KNN-3 93.0±1.0 93.1±1.5 92.0±0.6

AW-LS LDC 88.1±1.1 90.8±1.4 80.3±0.8
AW-LS QDC 91.1±1.3 89.5±1.4 83.2±1.2
AW-LS KNN-1 94.6±0.8 93.3±1.3 92.6±0.5
AW-LS KNN-3 95.1±0.6 91.7±1.7 93.1±0.7
MOF LDC 89.3±0.8 92.3±1.2 75.3±0.9
MOF QDC 95.1±0.6 94.1±1.1 88.0±1.0
MOF KNN-1 98.1±0.3 96.0±1.0 95.0±0.4
MOF KNN-3 97.5±0.5 92.7±1.2 94.2±0.5
BP LDC 91.0±0.9 91.2±1.1 88.4±0.7
BP QDC 92.5±0.8 91.1±1.4 89.6±0.6
BP KNN-1 97.4±0.6 96.1±1.1 96.3±0.6
BP KNN-3 97.2±0.5 95.0±1.0 95.5±0.4

BOB LDC 90.9±0.7 94.6±1.0 77.5±0.7
BOB QDC 93.9±0.6 93.6±1.0 87.0±1.1
BOB KNN-1 97.5±0.4 98.8±0.6 95.4±0.5
BOB KNN-3 96.9±0.6 97.1±1.3 94.2±0.7

TABLE II
MEASUREMENT OF TRUE POSITIVE RATE (TPR) USING ROC ANALYSIS

Method Classifier DB-UTP DB-UPV UTP+UPV
WT LDC 0.834±0.020 0.919±0.019 0.762±0.022
WT QDC 0.911±0.020 0.911±0.027 0.800±0.033
WT KNN-1 0.982±0.005 0.971±0.006 0.963±0.006
WT KNN-3 0.934±0.020 0.952±0.026 0.907±0.017

AW-LS LDC 0.920±0.013 0.909±0.023 0.848±0.013
AW-LS QDC 0.929±0.016 0.905±0.023 0.870±0.017
AW-LS KNN-1 0.984±0.005 0.974±0.010 0.969±0.006
AW-LS KNN-3 0.949±0.017 0.917±0.031 0.920±0.018
MOF LDC 0.908±0.013 0.898±0.026 0.752±0.023
MOF QDC 0.961±0.010 0.928±0.022 0.859±0.044
MOF KNN-1 0.996±0.002 0.984±0.012 0.978±0.006
MOF KNN-3 0.974±0.013 0.921±0.040 0.941±0.015
BP LDC 0.905±0.014 0.903±0.019 0.898±0.012
BP QDC 0.935±0.013 0.915±0.022 0.910±0.013
BP KNN-1 0.994±0.003 0.987±0.008 0.991±0.004
BP KNN-3 0.971±0.014 0.941±0.031 0.955±0.013

BOB LDC 0.923±0.011 0.935±0.020 0.772±0.023
BOB QDC 0.964±0.009 0.924±0.023 0.873±0.032
BOB KNN-1 0.994±0.003 0.992±0.005 0.985±0.005
BOB KNN-3 0.964±0.015 0.960±0.025 0.948±0.016

III. RESULTS AND DISCUSSION

We compare the proposed methods (see subsections II-
C, II-D and II-E) to the classical Wavelet Transform (WT)
and a more advanced method called Adaptive Wavelet with
Lifting Schemes (AW-LS). We show the accuracy in positive
identification of STN for both databases in Table I and true
positive rate (TPR) results in Table II.

We synthesize the most remarkable aspects of the results
in the following paragraphs:

1) It can be noticed that the sparse coding of MER
signals allows the extraction of more discriminative
features. Global outcomes in Tables I and II show a
better performance for the methods proposed in this
paper. We compare MOF, BP and BOB with classical
methods for signal processing in the state of the art,
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like WT or AW-LS. If we look at both databases
and all experiments, the sparse coding methods always
improve the results of WT and AW-LS.

2) The best accuracy result in UTP-DB is 98.1%
with MOF+KNN-1 and 98.8% in UPV-DB with
BOB+KNN-1. These results are satisfactory, because
we are only using simple classifiers, meaning that
the strength of the methodology relies on the sparse
coding of MER signals. We are currently looking at
implementing these methods in on-line systems applied
to Parkinson’s disease surgery.

3) Notice that when we mix the databases (UTP+UPV),
there is a considerable reduction in performance of
all classifiers. The reduced performance is explained
due to UTP-DB is sampled at 25 kHz and UPV-DB
is sampled at 24 kHz. However, the method BP is not
seriously affected by this issue and its performance in
Tables (I, II) is still very high.

4) The best result for the TPR is 0.996 (MOF+KNN-1)
for UTP-DB and 0.992 (BOB+KNN-1) for UPV-DB. It
means that the proposed methods have less than 0.1%
of false alarms in STN identification. By contrast, the
best TPR of WT is 0.982 and the best TPR of AW-LS
is 0.984 (less than 0.2% of false alarms). Clinical sig-
nificance of results in table II is remarkable. Because
a high TPR is a necessary attribute for an automated
system applied in DBS. False alarms could be critical
for the correct implantation of the stimulation device
in the STN. Therefore, therapeutic outcomes generated
by DBS could be suboptimal and patients could suffer
side effects.

5) According to the statistical analysis with the Kruskal-
Wallis test, there are not significant differences be-
tween the methods proposed here. So, we can not
establish the best model. An alternative way to evaluate
sparse coding is related to the average of sparsity level.
Recall that sparsity is the quantity of zeros (or near
to zero) coefficients needed for a successful represen-
tation. A sparse coding method seeks to represent a
signal with the fewest number of coefficients. MOF
has 1.5% of sparsity, BP has 2.7% and BOB has
66.7%. That is, BOB only requires the 33.7% of the
coefficients to represent MER signals.

IV. CONCLUSIONS AND FUTURE WORK

We presented in this paper the application of several sparse
coding to MER signals for identification of subthalamic
nucleus (STN) during deep brain stimulation (DBS) in PD
patients. This approach seeks to represent the signals with
the fewest number of coefficients needed to construct an
overcomplete space. We tested three sparse coding tech-
niques, namely, Method of Frames (MOF), Basis Pursuit
(BP) and Best Orthogonal Basis (BOB) and we merged two
classical dictionaries: Wavelet Packet and cosine Packet. This
processing methodology allows identification of STN with
an accuracy over 98% in two real datasets and improves
the results obtained by traditional methods like the wavelet

transform and advanced methods like adaptive wavelets.
However, it is important to note that we employed very
simple machine learning algorithms as Naive Bayes classifier
and K-nearest Neighbor. We even obtained similar results
than other works where it is applied more powerful methods
for pattern recognition as Support Vector Machines [16] or
Gaussian processes [3].

Preliminary results are highly satisfactory, we would like
to implement these methods in a software system for clinical
support during DBS.

ACKNOWLEDGMENTS

This research is developed under the project ”Desarrollo
de un sistema efectivo y apropiado de estimación de volu-
men de tejido activo para el mejoramiento de los resultados
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