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Abstract— Ambulatory EEG monitoring can provide medical
doctors important diagnostic information, without hospitalizing
the patient. These recordings are however more exposed to noise
and artifacts compared to clinically recorded EEG. An auto-
matic artifact detection and classification algorithm for single-
channel EEG is proposed to help identifying these artifacts.
Features are extracted from the EEG signal and wavelet sub-
bands. Subsequently a selection algorithm is applied in order to
identify the best discriminating features. A non-linear support
vector machine is used to discriminate among different artifact
classes using the selected features.

Single-channel (Fp1-F7) EEG recordings are obtained from ex-
periments with 12 healthy subjects performing artifact inducing
movements. The dataset was used to construct and validate the
model. Both subject-specific and generic implementation, are
investigated.

The detection algorithm yield an average sensitivity and speci-
ficity above 95% for both the subject-specific and generic
models. The classification algorithm show a mean accuracy
of 78 and 64% for the subject-specific and generic model,
respectively. The classification model was additionally validated
on a reference dataset with similar results.

I. INTRODUCTION

Electroencephalography (EEG) is a biological signal
reflecting the electrical activity of the brain. The signal is
acquired by placement of electrodes on the scalp, which
benefits from being non-invasive, cheap and provides a
high temporal resolution. This makes it an important tool
in disease diagnosis and brain research [1]. Due to the very
low amplitude of EEG in the range of uV, it is easily
contaminated by noise and artifacts. In the following, noise
is defined as signals originating from non-physiological
sources while artifacts are defined as signals originating
from internal or external sources other than the cerebral
cortex.

The most common artifacts occurring in the EEG are eye
and muscle activity artifacts [1].

The eye forms an electrical dipole, which changes when the
eye moves. This potential change causes a serious distortion
to the electrical field generated by the brain due to the fact
that the potential arising from eye-movements and blinks
are in the mV range. The eye-movement and eye blink
artifacts occur very frequently in the EEG, especially in the
frontal regions [2].

The activation of different muscle groups close to the head,
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can cause serious distortion to the EEG signal. Tension
of the neck or movement of the eye brows can cause
significant electromyographic (EMG) artifacts. Muscular
artifacts typically show in the EEG as high amplitude and
high-frequency activity [3].

In ambulatory settings, body-movement artifacts have also
been reported to be of particular concern [4].

The presence of artifacts can severely distort the
characteristics of the EEG signal, which can lead to
significant loss of reliability of algorithms performing
automatic analysis on EEG signals.

While advances in signal acquisition, data storage and
communication has made it possible to move EEG data
collection from the clinic into the home environment of the
patient, the magnitude and frequency of artifacts occurring
in the EEG significantly increases when the data collection
is moved out of the clinic. This creates a crucial need for
effective artifact detection algorithms [4].

For some applications only a single frontal channel is
necessary for monitoring purposes [5]. Recording EEG
with only a single channel makes it critically important to
develop a method for the effective detection of different
types of artifacts. Assessment of EEG quality with an
artifact classification algorithm can help in determining
whether the signal can be used for further processing even
though an artifact is present or must be discarded because
of too high artifact-contamination.

II. MATERIALS AND METHODS
A. EEG Data Collection

Continuous EEG was recorded at 128 Hz using a sin-
gle channel ActiWave recording device (CamNtech, Ltd.,
Cambridge, United Kingdom). Electrodes were positioned
according to the international 10 — 20 system with the
reference placed at Fpl and the recording electrode at F7.
The ActiWave recording device was secured with tape on
the left chest of the subject, and wires were drawn from the
specified recording locations to behind the ears in order to
minimize discomfort.

Recordings were obtained from 12 healthy subjects (10 male)
with a mean age of 30 (£12.7) years while conducting
artifact inducing movements.

A reference dataset was provided by the authors of [6]. The
dataset consists of multi-channel EEG recordings from 7
subjects performing artifact inducing movements. In total,
160 epochs of 0.5 seconds duration were obtained from
each subject. 8 classes were present in the data: jaw clench
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(JC), jaw movement (JM), eye blinks (EB), eye movement to
the left (EL), eye movement up (EU), eye brows movement
(ME), head rotation (RH) and an artifact-free class (None).
The channel Fpl-F7 was used for analysis.

B. Experimental Protocol

Subjects performed a series of artifact inducing facial and

head movements in order to obtain a dataset with different
types of artifacts present. Prior to the recording, the subject
reviewed the protocol describing the movements in order
to make sure the subject understood the task. The subject
was told to strictly follow the protocol and was instructed
not to talk during the time of the recording. The following
movements were performed: Jaw clench (JC), eye blinks
(EB), eye movements from side to side (EM), rotate head
(RH), move eye brows (ME) and casual jumping on the spot
(Jump). The experiment (except the jumping) was performed
sitting down in front of a computer. Between each type of
movement the subject was instructed to relax with eyes open
for 1 minute and subsequently relax with eyes closed for 1
minute. This was used as an artifact-free class (None). Each
of the artifact-inducing movements were performed for 30
seconds.
A program written in MATLAB (v. R2013a, Mathworks
Inc., Natic, MA, USA) was developed to control the timing
and execution of the protocol. A clear sound was played
each time the subject should perform a new task, while the
computer screen always displayed which type of movement
should be performed at the given time.

C. Pre-processing

In order to remove power-line interference, a notch filter
with a cut-off frequency at 50 Hz was applied before further
processing. All processing and analysis of the recorded
signals were conducted in MATLAB.

From the recorded EEG, epochs of 1 second duration with
an overlap of 50% were extracted for further analysis.
Some delay in the reaction of the subject, from the sound
is heard to the subject performs the new intended task, is
expected. This could potentially result in a significant error
in the automatic labelling procedure. A manual inspection
of all epochs was performed in order to validate the scoring.
Another reason for the need of a manual inspection, is that
eye-blink artifacts naturally occur when the subject has open
eyes .

D. Feature Extraction

A wide range of features were previously proposed for
classifying artifacts in EEG signals. Autoregressive (AR)
coefficients have shown good discriminative power of dis-
tinguishing among different artifact types [6]. The use of
higher order statistics and features derived from wavelet sub-
bands have also shown reasonable performance [7]. These
feature extraction methods have typically been applied to
multi-channel EEG.

We chose to extract features which previously demonstrated
good discriminative power between artifact classes. The
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idea was then to apply a selection algorithm in order to
identify the best discriminating features for a single-channel
application. The complete list of extracted features is found
in Table I.

TABLE I
LIST OF FEATURES EXTRACTED FROM THE EEG SIGNAL, z(n) AND THE
WAVELET DETAIL BANDS, d1 — d7.

Feature Number of Features

Energy of z(n)

Energy of di—7

Line length of z(n)

Line length of dj_7

Zero crossings of z(n)
Avg. magnitude of x(n)
Avg. magnitude of d1_7
Kurtosis of x(n)

Kurtosis of dy_7

Renyi’s entropy of z(n)
Renyi’s entropy of di_7
AR coeffs (P = 1) of z(n)
AR coeffs (P = 2) of z(n)
AR coeffs (P = 3) of z(n)
Reflection coeffs from AR models
AR coeffs (P = 2) of ACF of z(n)
Mean of z(n)

Std of z(n)

Variance of z(n)

Range of z(n)

Max amplitude of z(n)
RMS of z(n)

Max gradient of z(n)
Skewness of z(n)

Mean of z(n)’

Std of z(n)’

Kurtosis of z(n)’

Total # of features
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E. Feature Selection

A sequential forward selection algorithm was used to
identify an optimal feature subset from the original feature
vector. A relatively small amount of features are desired for
this application in order to avoid over-fitting and reduce the
complexity of the classifier. The forward selection procedure
was chosen because of its reported ability to fast and effec-
tively find a good subset [8]. A wrapper approach with the
test accuracy from a support vector machine (SVM) was used
as evaluation criterion in order to select the best features. The
selection procedure was stopped when 10 features had been
selected and the subset yielding the highest classification
accuracy was chosen for further analysis.

F. Classification

A SVM was used to make predictions on unseen obser-
vations. SVM is a popular supervised binary classification
technique where the model learns an optimal decision bound-
ary from training data and then applies this learned decision
boundary to a test set in order to classify new unseen data-
points.

SVM exploits the use of kernels to explicitly map the input
data into a higher dimensional space where a linear decision
boundary provide good separation between classes. Support
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(b) Classification with the Leave-One-Out generic model.

Confusion matrix for classification on the reference dataset. The red numbers indicate the average classification accuracy of each artifact-type over

all iterations of the cross-validation procedure . (a) results of the patient-specific model which yields an average accuracy over all subjects off 85(4.9)%.
(b) results from the generic model which have a mean accuracy off 65(12.7)% over the 7 iterations.

vectors are identified in the training data as observations
from two different classes, which lies in a similar range.
The support vectors are used to construct margins which best
separate the classes. An optimal decision boundary is then
found by maximizing the distance between margins between
two classes [9].

The model is in its nature a binary classifier. In order to
build a multi-class model some modifications are made. A
common approach in building a multi-class SVM is to build
N(N — 1)/2 binary classifiers, with N being the number
of classes. Each classifier is then trained on data from two
classes, producing individual classifiers for all combinations
of the classes and majority voting is used to make final
predictions.

The multi-class SVM was implemented with the LIBSVM
package [10]. A non-linear radial basis function was used
as kernel, which previously has shown to provide good
performance in classifying different artifact types [6]. A fine
grid-search was performed in order to find the optimal values
of the parameters C' and 7, which controls the trade-off
between the penalty variable and the margin and controls
the width of the kernel, respectively.

The subject-specific model was validated by a 5 times
repeated 4-fold cross-validation. The test set was completely
held out of the feature selection and SVM training procedure.
Between each of the 5 repetitions, data were shuffled in
order to generate new folds between different iterations. The
performance of the model was computed as the mean over
all iterations. The generic model was validated by Leave-
One-Out (LOO) cross-validation [11].

III. RESULTS

The classification accuracy is calculated as the number of
correctly classified epochs divided by the total number of
epochs. The results are presented as the mean classification
accuracy over all iterations of the cross-validation procedure.

A. Reference Dataset

The classification model was applied to the reference
dataset which benefits from an aligned class distribution
with 20 epochs per class for all 7 subjects. The results are

summarized in Figure 1a and 1b for the subject-specific and
generic model, respectively. The model shows an average
classification accuracy of 85% and 65% for the subject-
specific and generic approach, respectively. It is evident that
the generic model produces a more noisy results, where
the grouping of the classes are not as distinct as in the
subject-specific model. In general, the artifact classes being
responsible for the largest error are jaw movements, head
rotations and eye up movements.

B. ActiWave Database

The dataset recorded for this project suffers from a
more skewed class distribution, why initially the detection
algorithm was applied and subsequently the detected
artifacts were classified using the classification model.
The detection results are presented in Figure 3 and the
classification results are presented in Figure 2a and 2b.

For the subject-specific model, the detection of artifacts
resulted in an average sensitivity, specificity and positive
predictive value of 96, 97 and 94%.

The subsequent classification of the detected features shows
an average classification accuracy of 78 and 64% for the
subject-specific and generic model, respectively. It is evident
that the jump class is very hard to classify, where the
accuracy of classifying this artifact class in the generic
model almost equals random guessing.

IV. DISCUSSION

The best discriminating features showed to be Renyi’s
entropy calculated from wavelet sub bands, d; — d5. Am-
plitude range and coefficients from low order AR models
also showed good discriminative properties in both models
[12]. Head rotation, jaw movements and eye up artifacts
are observed to be the hardest artifacts to classify on the
reference dataset. The two former classes activates muscles
relatively far away from the recorded EEG channel. This can
explain why the single-channel algorithm has difficulties in
detecting these types of artifacts.

The jaw clench, jaw movement and eye brow movements
are observed to group together, creating a general muscle
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(b) Classification with the Leave-One-Out generic model.

Fig. 2. Confusion matrix for artifact classification on the ActiWave dataset. The red numbers indicate the average classification accuracy of each artifact-
type over all iterations of the cross-validation procedure. (a) results of the patient-specific model which yields an average classification accuracy over all
subjects off 78(5.0)%. (b) results from the generic model which have a mean classification accuracy off 64(8.2)%.

artifact group. All three artifact types produces significant
muscle activity clearly evident as high frequency activity in
the EEG.

The generic results show the same tendencies to a wider
extend. The large standard deviation in the results indicate
that classification of different artifacts is “easier” in some
subjects than others.

The artifact detection results showed good performance on

the ActiWave dataset. Figure 3 shows similar performance
across all subjects with a sensitivity and specificity above
95%.
The classification model on the ActiWave dataset shows
similar grouping tendencies as observed on the reference
dataset. The jaw clench and eye brow movements are seen
to group together, creating a muscle artifact group. The eye
artifacts are seen to group together with head rotations. Using
only a single frontal channel, the muscle activity caused by
head rotations, are not expected to be captured by the frontal
electrode. The head rotation usually causes an eye movement
artifact most pronounced in the frontal regions, explaining
why the head rotations groups with the eye artifacts.

_100——— —
9 —
o 90
2]

80
?100 T T T T . T
3~
o 90
2]

80
,\3100 T T T T T T T T T T T % T
2 I ITTITTT ™ T T
o
& go

1 2 3 4 5 6 7 9 10 11 12 Avg LOO

8
Patient No.

Fig. 3. Artifact detection results on the ActiWave dataset. SE, SP and PPV
respectively denotes the mean sensitivity, specificity and positive predictive
value over 5 iterations of 4-fold cross-validation for each subject and the
generic model indicated by LOO. "Avg” denotes the mean over all subjects.
The red lines indicate the standard deviation.

The results indicate that single-channel artifact detection
is feasible in both a subject-specific and generic setting. The
classification procedure is sensitive to similar characteristics

in artifact types, but indicate that concatenating the artifacts
into more general groups such as muscle, eye and movement
artifacts, could lead to an increase in performance and the
possibility of obtaining a more reliable model.

A. Future Work

The performance of the detection and classification model
should be evaluated on a large clinical dataset containing
seizure activity, in order to asses the opportunities in applying
the model as a pre-processing step for a seizure detection
algorithm. The generic classification model should be further
developed in order to obtain reliable performance.
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