
  

  

 Abstract— In this paper we present a new method for 
passively measuring walking speed using a small array of radio 
transceivers positioned on the walls of a hallway within a home. 
As a person walks between a radio transmitter and a receiver, 
the received signal strength (RSS) detected by the receiver 
changes in a repeatable pattern that may be used to estimate 
walking speed without the need for the person to wear any 
monitoring device. The transceivers are arranged as an array 
of 4 with a known distance between the array elements. 
Walking past the first pair of transceivers will cause a peak 
followed by a second peak when the person passes the second 
pair of transceivers. The time difference between these peaks is 
used to estimate walking speed directly. We further show that it 
is possible to estimate the walking speed by correlating the 
shape of the signal using a single pair of transceivers positioned 
across from each other in a hallway or doorframe. RMSE 
performance was less than 15 cm/s using a 2-element array, and 
less than 8 cm/s using a 4-element array relative to a gait mat 
used for ground truth. 

I. INTRODUCTION 

Assessing changes in mobility in the home is important 
for monitoring the health status of people with chronic illness 
and for enabling seniors to live independently. Gait metrics 
including walking speed are important indicators of health for 
seniors [1,2,3,4]. Abbellan et al. [3] performed an extensive 
review of the literature and evaluated all longitudinal studies 
that examined walking speed at baseline followed by a 
longitudinal monitoring of physical and mental health status. 
They concluded that gait speed as measured under normal 
life conditions is a consistent risk factor for disability, 
cognitive impairment, falls and / or mortality. Buracchio et 
al. [5] showed that a downward trajectory of gait speed 
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precedes cognitive decline and even presage Alzheimer’s 
disease. Dodge et al. [6] showed that in-home assessment of 
walking speed can be used to distinguish people with mild 
cognitive impairment (MCI) and those without MCI. 

Estimating walking speed within a real-world 
environment is important because current estimations done 
within a clinic are oftentimes non-representative of a person’s 
true walking speed. Walking speed is typically measured 
within a clinical setting through a test such as the Timed 25-
Foot Walk which requires a patient to walk as quickly as 
possible on a well-marked 25-foot course. The duration of the 
walk is measured by a clinician and used as a metric of 
mobility and leg function. Measuring walking speed in a 
clinical environment has been shown to be an inaccurate 
estimate of real-life walking speed; patients oftentimes walk 
faster in a clinic than they do in their daily lives. 
Furthermore, clinical testing occurs infrequently, whereas in-
home gait measurement can provide real-time estimates of 
walking speed as an indicator of the patient’s health under 
real-world conditions.  

Other groups have described methods for passively 
estimating gait speed within the homes. Pavel et al. [7] 
showed how infrared (IR) sensors arranged in a line on the 
ceiling could be used to estimate walking speed. In this 
system, as a person walks beneath ceiling mounted IR 
sensors arranged in a line, the sensors would fire 
synchronously. The velocity of the subject could be estimated 
using the distance between the sensors. Hagler et al. [8] 
followed up on this work and showed that by restricting the 
field of view of these walking line sensors, an accuracy of 9 
cm/s standard deviation of error could be achieved relative to 
a GAITRite walking mat1. Low et al. [9] proposed an in-

1 Our own experience using the IR line sensors is that accuracy is much 
lower in practice. While effective for providing relative speed for single 
subject longitudinal studies, absolute measures of speed for different 
systems are less accurate due to issues with in-home calibration. 
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Figure 1. Access points are arranged along a hallway. As a person walks 
between APs 1 and 2 (Link A), signal strength between those two APs (shown 
as a line with an arrow) will drop. As the person continues walking down the 
hallway, the signal strength between AP 3 and AP4 (Link B) will drop. 
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home walking mat for estimating gait speed and showed how 
it could be used to estimate fall risk. Walking mats suffer 
from wear and tear and may be a trip hazard for seniors. Use 
of video cameras has also been described as a method for 
estimating walking speed. Wang et al. [10] showed that 
walking speed estimates using an in-home video camera 
system were close in accuracy to gait mat estimates. The 
same group used the Microsoft Kinect 3-d camera for in-
home estimate of gait speed and fall risk [11]. However, there 
are privacy issues with using video cameras and many 
subjects within our living laboratory cohort will not use them. 

In this paper we describe a new method for estimating 
walking speed passively within the home using a small array 
of wall-mounted radio transceivers. The sensors have the 
advantage of being low-cost, unobtrusive, and easy to install, 
while still providing accurate estimates of walking speed. 
The person being monitored need not wear or carry any 
device. The transceivers, referred to as access-points (AP), 
are arranged as shown in Fig. 1.  

As a person walks between a transmitting and receiving 
AP, the link Received Signal Strength (RSS) is attenuated 
because the body absorbs the RF energy. The time-difference 
between peak drops in RSS energy as a person crosses links 
can be used to estimate walking speed. Estimation using only 
a single link is also possible by analyzing the shape of the 
measured RSS waveform. Note that this new array 
configuration for detecting walking speed can be used as 
either a stand-alone sensor or part of a more complete passive 
tracking and mobility system currently under development. 
The complete system uses the same AP receivers positioned 
throughout the home allowing for passive tag-free 
localization [12,13,14]. 

II. METHODS 

A. Hardware and system configuration 
The system we have developed for measuring walking 

speed consists of 4 RF transceivers arranged on the walls of a 
hallway as shown in Fig. 1. Testing was performed at the 
OHSU Point of Care Laboratory (PoCL), a simulated 
apartment consisting of three rooms: a bedroom, bathroom 
and combined kitchen / living room filled with furniture and 
appliances typical for a home environment. The hallway was 
simulated by mounting the transceivers on wooden polls at a 
height of 1 m. The distance separating all APs was also 1 
meter. This mock configuration was necessary to allow 
placement of a GAITRite gait mat (CIR Systems Inc., Sparta 
NJ) to capture walking speed groundtruth. 

The transceivers used were manufactured by EmbedRF 
(Portland OR) and were programmed to transmit data at 905 
MHz with a transmission rate of 20 Hz (Fig. 3).  

AP1 initiates the communication by sending a data packet 
to both AP2 and AP3. Both AP2 and AP3 then send a packet 
to AP4, which acts as a hub consisting of a transceiver 
connected to a laptop computer. A link is defined as a signal 
transmission between two APs. Link A is the RSS path 
between AP1 and AP2; Link B is the RSS path between AP3 
and AP4. There are also two additional cross-link RSS paths 
available; however, these were not used for this initial study. 

Periodic transmission enables all APs to function at very low 
power levels (i.e. sleep whenever not transmitting) and last 
for up to a year on a single set of batteries, making the 
device ideal for a home monitoring application. When these 
devices are installed in a home, the Hub can be connected to 
a Wifi router that will forward the information to an 
aggregating microcontroller in the home and send up to a 
cloud server. The total cost of the 4 APs is less than $150 as 
compared to over $10,000 for a GAITRite system.  

B. Two-Link walking speed estimation (4 APs) 

An example of what the RSS signals look like when a 
subject walks past each of the two straight-across paths, 
Link A and B, is shown in Fig.3. Notice that the RSS 
crossing Link A peaks first. We define ∆𝑡 to be the time 
difference between the first peak and the second peak. The 
estimate of the walking speed is given directly as 𝑣𝑡𝑖𝑚𝑒 =
∆𝑑/∆𝑡, where ∆𝑑 is the distance separating the links (∆𝑑 
=1m in our set-up).  

Prior to getting an estimate for ∆𝑡, it is first necessary to 
locate the peaks. A peak detection algorithm is used that 
finds local maximums in the signal (MATLAB findpeaks 
function). This algorithm detects about 80% of the peaks 
accurately. However, some of the peaks exhibit double-peak 
behavior, which is likely due to the leg or arm swing 
influencing the RSS measurement. To account for this we 
locate signal crossing on either side of the original peak 
where the level rises above or below 75% of the peak 
amplitude. The midpoint between these crossings is used as 
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Figure 3. Raw RSS signals. Notice that the RSS LinkA peaks earlier than 
the RSS crossing Link B.  

Figure 2. (a) EmbedRF 915 MHz, wireless transceiver used for the access-
points and hub (1.5 grams, 10 payload byte, 50 ft range). (b) Enclosure used to 
hold the transceiver and mount on the wall. 
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the final centroid peak. This is shown visually in Fig. 4.  

C. Single-Link walking speed estimation (2 APs) 
Estimating the walking speed from crossing a single link 
between only 2 APs is also possible by analyzing the 
waveform shape. While less accurate than using 4 APs with 
relative timing information, this configuration may be 
advantageous for placing the sensor in a doorway. 
 Fig. 5 shows RSS waveforms for slow, medium, and fast 
walks. Notice how the RSS waveform is thinner during a 
fast walk. This makes intuitive sense since it takes less time 
for the walker to pass by and interfere with the signal. 

Instead of using signal width as a feature, our experiments 
showed that using area was more reliable and correlated 
better with walking speed. Ideally, area should be linearly 
related to width. The area, a, is calculated simply as the sum 
of the absolute RSS values for a 5 second window around 
the peak location. Walking speed is estimated from area 
using a linear regression, 𝑣𝑎𝑟𝑒𝑎 = 𝛽0 + 𝛽1𝑎, where the 
coefficient are fit using least-squares. These coefficients 
provide a subject-dependent scaling factor. 

D. Combining timing and area features (4 APs) 
The final variant for estimating walking speed using 4 APs 
is to combine both the timing information and the area 
features from both links. Specifically, the velocity estimate 
using combined features is given as, 

𝑣𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = β0 + β1aA + β2aB + β3𝑣𝑡𝑖𝑚𝑒  

where aA and aB are the areas associated with Link A and 
Link B, and coefficients are again fit using least-squares. 

III. RESULTS AND EXPERIMENTS  

To evaluate performance, 3 volunteers (subjects A, B, and 
C) did a total of 60 walks each. Walks were done starting at 
a slow speed and increasing to a fast speed so that a range of 
speeds would be covered for each subject. The speeds were 
approximately regulated by having the walkers carry a 
metronome and taking a step for each beat of the 
metronome. The metronome started at 40 beats per minute 

for the first walk and ended at 99 beats per minute for the 
60th walk. The walking speeds as measured by the GAITRite 
mat ranged from approximately 0.5 m/s to 2 m/s.  Note that 
while the GAITRite mat is used as “ground truth,” the 
walking speed measurement for the GAITRite corresponds 
to the average walking speed over an approximate 4-5 m 
walking path, whereas our system gives a more 
“instantaneous” measure of walking speed directly in front 
of the APs. As a person’s speed varies during a single walk, 
it is expected that our estimates will not match exactly. 

Results are summarized in Table 1. As can be seen both 
the 2 Link timing approach (4 APs) and the 1 Link area 
approach (2 APs) provide accurate estimates of walking 
speed. Combining both timing and area features provides the 
most accurate estimates. For individual subjects the linear 
regression using area features was fit using the 60 available 
walking speed trails2. We also tested the performance when 
coefficients were fit on two subjects and then tested on the 
third subject, as indicated in the “cross-subject calibration” 
columns in Table 1. In this case performance degrades 
slightly, indicating that correlation of area features is subject 
dependent and that individual subject calibration may be 
necessary for optimal performance.  

The scatter plot between the GAITRite velocity and the 
estimated velocity, 𝑣𝑡𝑖𝑚𝑒 , using the 2-Link method is shown 
in Fig. 6 (a). The velocity, 𝑣𝑎𝑟𝑒𝑎, predicted using the single-
link method is shown below in Fig. 6 (b). And lastly, we plot 
the velocity, 𝑣𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 , predicted using the combined area 
and timing difference below in Fig. 6 (c).  

TABLE I.  RMSE PERFORMANCE 

 
RMSE relative to GAITRite (m/s) 

Subject A Subject B Subject C Average 
2 Link 
timing 

0.195 0.053 0.089 0.112 

1 Link 
area  0.168 0.179 0.142 0.162 

Timing 
and area 0.085 0.047 0.103 0.078 

 Cross-Subject Calibration 
1 Link 
area 0.383 0.214 0.280 0.292 

Timing 
and area 0.117 0.061 0.087 0.086 

The range of speed and tight correlation between the 
GAITRite speeds and the estimated speed is shown. Subject 

2 Some of the GAITRite and RSS data for Subject C was corrupted 
requiring us to manually remove a few of the walking trials during testing. 

 

Figure 5. RSS for (a) slow, (b) medium, and (c) fast walking speeds.  

(a) Slow (b) Medium (c) Fast 

Figure 4. Demonstration of how peaks were picked. The initial peak is 
shown as a square while the centoid peak (circle) is picked by finding the 
point where the signal is at 75% of its smallest value.  
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B, whose RMSE was lowest, walked in a more narrow range 
of walking speeds as might by typical indoors. Larger errors 
for subject A occurred during faster walking speeds and may 
be related to the averaging effect of the GAITRite estimates. 
The estimated speeds using 2-link timing were slightly 
biased for Subject A, but were improved after performing 
linear regression. Subject C exhibited a number of additional 
outliers (possibly due to corrupted data) that may have 
affected performance and cross-subject calibration. 

IV. DISCUSSION 
In this paper we have demonstrated a new method for 

accurately estimating walking speed within a home 
environment. Using 2 links with 4 APs placed in a hallway, 
timing information can be used to estimate walking speed 
with no calibration required. Improved performance is 
achieved combining both timing and area features (average 
RMSE performance was less than 8 cm/s for 3 subjects 
relative to a GAITRite mat used for ground truth). Using just 
area shape features, walking speed can also be estimated 

using only a single link with 2 APs. While this allows for 
placing the sensors in additional locations such as a 
doorframe, the single link method requires calibration to a 
specific user for best performance. A limitation of the work 
presented here is that the algorithm was only trained and 
tested on 3 subjects. In the future, we will evaluate on a 
larger cohort. Future work will also involve refinement of 
algorithms for improved robustness, alternative approaches 
to calibration, and long-term testing in the homes of seniors. 
We are also investigating whether a larger array of APs 
placed lower to the floor can be used to estimate additional 
gait features such as footfall and stride length. 
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Figure 6. Estimated vs. actual velocity plot using (a) 2-Link timing 
method, (b) 1-Link method, and (c) combined method. 
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