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Abstract— Muscle’s contractile properties are complicated by
its viscoelastic properties. Failure of early viscoelastic muscle
models led to Hill’s force-velocity relation embodied as the
contractile element. Adopting a particular force-velocity rela-
tion to describe muscle is neither easy, nor unique [1]. Time-
varying elastance based models of the left ventricle have been
popular since the idea was presented in 1969 [2]. This paper
investigates adoption of the time-varying elastance concept to
describe the viscoelastic properties of muscle. It will be shown
that a time-varying elastance must be extended to a time,
length, and velocity dependent elastance. Results show how a
generalized force generator description of muscle [3] may be
used to realistically model muscle’s viscoelasticity.

I. INTRODUCTION

DESCRIBING muscle as a mechanical spring has origins
as early as 1674, when Mayow described muscle as an

elastic material that changes due to metabolic processes [4].
Weber viewed muscle as an elastic spring whose stiffness
varies depending on whether it is in a passive or active state
[5]. Chauveau and Laulanié also considered muscle as an
elastic spring with time-dependent stiffness, and proposed
that shortening velocity affects force generation [6], [7].
Purely elastic models were subsequently refuted on ther-
modynamic grounds [8]. Stress relaxation and creep dis-
played by muscle are not explained by a simple viscoelastic
model [9]. Hill reintroduced viscoelastic muscle models after
observing that external work done accelerating an inertial
load was inversely related to shortening velocity [10]. Series
two-element viscoelastic models (Maxwell) are unbounded
in length when subjected to a step change in force, and
parallel (Voigt) models yield infinite force when subjected
to step changes in length. Fenn found that energy release by
muscle differs for isometric versus shortening muscle [11].
The concept of describing muscle as elastic material survived
Mayow, but not the requirement that muscle elastance change
with metabolic processes.

Subsequently, Hill developed the contractile element em-
bodied as an empirical hyperbolic relation between muscle
force (load) and shortening velocity [12]. Currently, lumped
muscle contraction models are typically based on the con-
tractile element. The contractile element is defined from
two muscle variables, force and velocity. A previous study
showed that evaluation of muscle’s contractile properties via
variables may not be unique [1]. Alternatively, a generalized
force generator model permits computation of the parameter
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muscle elastance that may more accurately reflect muscle’s
contractile properties [3].

This study attempts to identify the underlying mechanisms
that result in muscle’s viscoelastic properties. Although the
work uses data measured from twitch contractions of cardiac
muscle, similar behavior is exhibited by all striated muscle.
Consequently, this approach may be useful in modeling the
approximately 650 muscles in the human body.

II. METHODS

Time-varying elastance. Muscle force, fm, is related to
muscle length, `m by a time-varying elastance, Em(t):

Em(t) =
fm(t)

`m(t)− `c
(1)

where `c is the constant muscle length corresponding to zero
generated force. Muscle is thereby viewed as a spring whose
stiffness varies with time, according to biochemical processes
within the muscle ultrastructure. This relation is analogous to
the time-varying elastance description for the left ventricle,
relating ventricular pressure and volume [2].

Solving eq. 1 for muscle length `m and taking the deriva-
tive with respect to time gives velocity of shortening d`m/dt:

d`m
dt

=
1

Em

dfm
dt

− fm

Em
2

dEm

dt
+
d`c
dt

(2)

Time and length-varying elastance. Broadening the con-
cept of a time-varying elastance to a time and length-varying
elastance:

Em(t, `m) =
fm(t)

`m(t)− `c
(3)

yields the following expression for velocity of shortening:

d`m
dt

=
1

Em

dfm
dt

− fm

Em
2

[
∂Em

∂`m

d`m
dt

+
∂Em

∂t

]
+
d`c
dt

(4)

Brady muscle experiments. Force and length data from the
literature [13] were used in this modeling study. Papillary
muscles were isolated from the right ventricles of rabbits or
cats. Muscles ranged in weight from 0.3–5 mg, in length
from 3–10 mm and were no greater than 1 mm in diameter.
Muscles were bathed in oxygenated perfusate maintained at
22◦C. Force was measured with a capacitance force trans-
ducer, and length with photoelectric cells detecting motion
of a lever attached to the muscle. Imposed length changes
were implemented with an ergometer built from a modified
loudspeaker voice coil.

A recent model of muscle contraction [3], defined as
follows, was compared to the time-varying elastance model.
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Generalized force model. Muscle force fm is described as
a function of time t and muscle length lm according to:

fm(t, lm) = a(lm − b)2 + (c lm − d)f(t) (5)

Generated force results from the sum of passive and active
components. a is a measure of passive muscle elastance and
b corresponds to muscle length at zero force. Parameters a
and b describe force resulting from stretch of the passive,
unstimulated muscle. Parameters c and d describe muscle’s
active force generation. c, the length dependent component,
is directly related to the muscle’s contractile state, and varies
with changes in inotropy. The length independent term, d, is
constant for a particular muscle strip. The model exhibits
muscle’s force-length relation [14].
f(t) describes the time course of active force generation:

f(t) =
(1− e−( tτc )

α

)e−(
t−tb
τr

)α

(1− e−(
tp
τc

)α)e−(
tp−tb
τr

)α
, tb < t < 1 (6)

τc and τr are time constants characterizing the contraction
(force increase) and relaxation (force decrease) processes
related to myofilament crossbridge bond formation and de-
tachment, respectively. α is a measure of the overall rate of
these processes. The denominator normalizes f(t) between
the values 0–1. The combination of passive and active terms
yields an analytical function describing muscle force as a
function of both time and muscle length. tb is a time constant
derived from tp, τc, τr and α:

tb = tp

1−
(
τr
τc

) α
α−1

[
e−(

tp
τc

)α

1− e−(
tp
τc

)α

] 1
α−1

 (7)

and is close to the time to peak force, tp, in magnitude.
The activation function f(t) was modified to include

velocity dependence, allowing it to reflect an altered number
of attached crossbridge bonds:

F (t, vm) = f(t) + k1vm(t) + k2vm(t− τ) (8)

k1 and k2 describe how the number of bonds varies with
muscle velocity at time t, and delayed τ after t. Muscle
elastance, Em, defined as ∂fm/∂lm, was computed as

Em(t, lm) = 2a(lm − b) + cf(t) (9)

Table I shows model parameters extracted from one papillary
muscle. Detailed explanation of parameter extraction from
experimental force curves is presented in [3].

III. RESULTS

Brady [13] measured isometric muscle force for papillary
muscles that were quickly released or stretched to a second
isometric length during the twitch contraction. Fig. 1 shows
quick release curves measured from one muscle. The topmost
force curve corresponds to the isometric twitch at the initial
muscle length. Other curves show how muscle force can drop
to zero depending on the magnitude of the change in muscle
length and its velocity of shortening. If the time-varying
elastance (eq. 1) is subjected to a quick release (eq. 2),

TABLE I
MODEL PARAMETERS EXTRACTED FROM ONE MUSCLE STRIP.

Constant Value [units]
a 1.861 [mN/mm2]
b 7.956 [mm]
c 19.2 [mN/mm]
d 158.1 [mN]
τc 0.19 [s]
tp 0.45 [s]
τr 0.3 [s]
α 2

k1 = k2 0.01 [s/mm]
τ 0.01 [s]

generated muscle force simply traverses from one isometric
force curve (corresponding to the longer, initial length) to the
other (final, shorter length), as shown in fig. 2. The model
exhibits no velocity dependent force deactivation.
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Fig. 1. Measured quick release force curves from the literature, adapted
from [13]. Quick length changes varied in magnitude and speed, since the
amount of release required to drop the force to zero depends on the force
at the time of release.
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Fig. 2. Calculated quick release experiment performed on the time-varying
elastance model of eq. 1. Muscle length of 10 mm was released 5% over
10 msec. No force deactivation occurs for this model.

Allowing muscle elastance to vary both with time and
muscle length (eq. 3) yields a more complicated expression
for velocity of shortening (eq. 4). Figure 3 shows quick
release computed for the time and length dependent elas-
tance model. The term ∂Em/∂`m represents how muscle
stiffness changes with muscle length, and was taken to
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be 20 mN/mm2. This model now shows extensive force
deactivation.
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Fig. 3. Calculated quick release experiment performed on the time and
length-varying elastance model of eq. 3. Muscle length of 10 mm was
released 5% over 10 msec. Force deactivation occurs for this model.

Figure 4 shows papillary muscles subjected to quick
stretches [13]. Shown are 5% stretches for muscle with
initial length of 5.5 mm. The force response resembles stress
relaxation of a 3-element standard linear solid, a viscoelastic
model with a spring in parallel with the series combination
of another spring and dashpot. The goal is to identify these
elements with physiological significance. As expected, the
time-varying elastance (eq. 1) shows no force overshoot, or
subsequent stress relaxation, but merely traverses from one
isometric force curve to the other (not shown).

Fig. 5 shows quick stretch performed on the time- and
length-varying elastance (eq. 4). As shown, ∂Em/∂`m pro-
vides force overshoot beyond the isometric level. However,
no subsequent force deactivation is present.

Fig. 6 shows quick release and quick stretch experiments
computed from the generalized force model (eqs. 5 and 8).
The dashed curves denote isometric force at the initial and
final muscle lengths. For quick release, muscle force drops
below the shorter isometric level, showing force deactivation
and subsequent force recovery. After quick stretch, muscle
force is initially higher than the longer isometric level, with
subsequent recovery. Muscle experiments show a slower
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Fig. 4. Measured quick stretch force curves from the literature, adapted
from [13]. The muscle was stretched 5% from initial length of 5.5 mm.
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Fig. 5. Calculated quick stretch experiment performed on the time and
length-varying elastance model of eq. 3 using eq. 4. Muscle length of 10 mm
was stretched 5% over 10 msec. Muscle force overshoot is present, but stress
relaxation is not for this model. ∂Em/∂`m=15 mN/mm2.

force recovery after the length change than those predicted
by the model, suggesting that quick changes in muscle length
directly affect the muscle’s ability to form crossbridge bonds
and generate force.
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Fig. 6. Calculated quick release and stretch experiments computed for
5% changes in muscle length performed over 0.01s. Initial muscle length is
10mm. The dashed curves describe isometric force at the shorter (9.5mm)
and longer (10.5mm) muscle lengths.

IV. DISCUSSION

Modeling muscle with a time-varying elastance is at-
tractive in its simplicity. Adopting a time-varying elastance
curve a priori, however, fixes the muscle’s contractile prop-
erties. Experimental data suggest that muscle’s instantaneous
loading conditions change its elastance. For example, x-ray
diffraction data suggest widespread bond detachment with
quick release. Both quick releases and stretches of 2% of
sarcomere length produce large, rapid drops in the 14.3nm
x-ray diffraction intensities [15], suggesting increased dis-
order in the contractile process with enhanced crossbridge
detachment. Such enhanced disorder, coupled with the drop
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of muscle force to zero, is strong evidence for universal
bond detachment following quick release. The same trend
of increased bond disorder is observed for the quick stretch
diffraction pattern. Aequorin signals from ventricular pap-
illary muscle corresponding to free calcium ion, believed
to have been released from detached bonds, also suggest
increased bond disorder during quick stretch and release
experiments [16]. During slower length changes, such as
isotonic conditions, mammalian papillary muscle shows sig-
nificantly greater aequorin signals than for isometric con-
traction, indicating increased amount of free calcium ion
and suggesting enhanced detachment of bonds, and that
relaxation occurs earlier when muscle shortens than for the
isometric case [17]. Clearly, muscle’s nonlinear viscoelastic
properties arise from ultrastructural dynamics.

Like muscle, the muscle model of eq. 5 is dynamic and
varies with loading conditions. Although not shown, muscle
elastance can be calculated from eq. 5 by taking the partial
derivative with respect to muscle length, the traditional defi-
nition of elastance, shown in eq. 9 [3]. Elastance calculated in
this way is also dynamic, and varies with loading conditions,
varying with time, muscle length, and velocity of shortening.

V. CONCLUSIONS

A time-varying elastance based model of muscle contrac-
tion is unable to describe either muscle force overshoot or un-
dershoot accompanying quick changes in muscle length. This
purely elastic model demonstrates no viscoelastic properties.
Making the elastance time and length varying embodies the
model with force overshoot, in essence changing the pre-
defined stiffness to some other pre-defined state. However,
the model is insufficiently dynamic to show force recovery
that resembles stress relaxation. Equation 5 provides a more
realistic model of muscle’s nonlinear viscoelasticity.

The muscle model of eq. 5 embodies muscle dynamics
that are directly related to heart dynamics. For example, the
Frank-Starling relation for the heart’s preload arises from
muscle’s force-length relation. Increased muscle force, and
thereby ventricular pressure, has both a passive component
due to increased muscle stretch and an active component
due to the formation of crossbridge bonds within the muscle.
Although not shown in this paper, the model possesses an
inverse force-velocity relation that translates to the heart’s
sensitivity to afterload. At higher pressures, the ventricle is
forced to eject blood more slowly, thereby reducing cardiac
output. Inotropic changes influence calcium ion availability
in the muscle, which controls the number of bonds formed.

Lumped muscle models are commonly based on Hill’s
contractile element, embodied as a particular force-velocity
relation. Studies have shown that the measured force-velocity
relation varies with loading conditions [13], [18], [1]. Maxi-
mum velocity of shortening of the contractile element cannot
be distinguished from a shift due to a change in muscle
length, thereby invalidating it as an index of contractility
[19]. Similarly, modeling showed that the entire force-
velocity curve is also not unique for a particular contractile
state and loading condition [1]. It is interesting to note that

eq. 5 possess an inverse force-velocity relation without as-
sumption of such; it arises from the model’s force generating
mechanism.

Results suggest that the time constants τc and τr are
associated with the normal cycling of crossbridge bonds.
If an imposed muscle length change is faster than this
process, muscle stiffness is dictated by the current number
of attached bonds, leading to increased stiffness. The quick
length change then disrupts the bond formation process,
leading to force deactivation, with subsequent recovery via
normal bond cycling. The dynamic model of eq. 5 permits
description of these ultrastructural processes. Since parame-
ters have physiological significance, this model may provide
new insight into muscle contraction dynamics.
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