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Abstract—Craniosynostosis, a disorder in which one or more
fibrous joints of the skull fuse prematurely, causes skull mal-
formation and may be associated with increased intracranial
pressure and developmental delays. In order to perform medical
research studies that relate phenotypic abnormalities to outcomes
such as cognitive ability or results of surgery, biomedical re-
searchers need an automated methodology for quantifying the
degree of abnormality of the disorder. This paper addresses that
need by proposing a set of features derived from CT scans of
the skull that can be used for this purpose. A thorough set of
experiments is used to evaluate the features as compared to two
human craniofacial experts in a ranking evaluation.

I. INTRODUCTION

Craniosynostosis, a birth defect that occurs when one or
more sutures, the fibrous joints of the skull, fuse prematurely;
it occurs in one in 2,000 to 2,500 live births [1]. Often, a
misshapen head and abnormal facial features are induced [2],
as illustrated in Fig. 1, which shows the most common cases
of synostosis: 1) sagittal, 2) unilateral coronal, and 3) metopic.
Although clinicians can easily diagnose craniosynostosis and
classify its type, being able to quantify the condition (i.e.,
shape-deformity) automatically is important. Manual coding
by expert reviewers is expensive, time-consuming, and proba-
bly unreliable without extensive pre-training. Automated plat-
forms, once they are developed, are a fast, reliable and rela-
tively inexpensive method for obtaining precise quantification
of large data sets. Future clinical applications, in which for
example a surgeon might want to quantify pre- to post-surgery
change, would be quite impractical using manual ratings in a
clinical setting.

In previous work, Atmosukarto et al. [3] determined several
measures for quantifying the severity of deformational plagio-
cephaly (DP), a postnatal flattening of the back of the skull.
Her descriptors used the concept of an azimuth-elevation-angle
histogram of the surface normals of the back of the head and
produced severity errors that were functions of the left and
right side bins of these histograms.

Yang et at. [4] developed a severity-based retrieval sys-
tem that produced a variation of Ruiz-Correa’s cranial im-
age [5]. To assess severity, Yang used logistic regression,
L1-regularized logistic regression, the fused lasso and the
clustering lasso classifiers but the method required a high-
dimensional 100 x 100 distance matrix and it was both com-
putational and memory costly. Her method was also sensitive
to poor resolution, noise or other imperfections on the original
CT scans; consequently, only 70 skull images could be used.
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Fig. 1: Sagittal, uni-coronal and metopic synostosis skulls.

In our own previous work [6] on classification, we devel-
oped a general platform upon which basic shape measures,
both single-valued and vector-valued were extracted from a
single plane projection of the 3D skull. This technique allowed
us to process images that would otherwise be eliminated due
to poor resolution or noise on their original CT scans and
to distinguish with high accuracy between abnormal cases in
each class and controls. In the current paper, the features are
expanded to become more descriptive so that they can be used
to score all the images in each class according to different
measures of shape-deformity.

II. METHODOLOGY

Our system is a general platform for 3D craniofacial shape
analysis that was described in detail in [6] and will be briefly
summarized here.

A. Preprocessing, ROI, and Contour Extraction

Seattle Children’s Hospital acquired the CT images from
Atlanta, Chicago, Seattle and St. Louis sites. From the CT
volume data of the head, our system first extracts the skull
slices and creates a single 3D image of the skull surface mesh.
Each mesh contains between 140,000 and 850,000 vertices.
Next, our system performs normalization on the surface mesh
to ensure the skull poses are symmetrical and use the same
coordinate and orientation. The final step in preprocessing is
landmarking. We use only two landmark points: nasion and
opisthion to define our base plane as shown in Fig. 2. The mesh
on and above this base plane is considered to be the region
of interest (ROI), which our algorithm extracts. Subsequently,
the coordinate reference of the 3D ROI is re-oriented.

Our contour extraction module first projects a top view of
the 3D ROI onto a 2D plane. Then it extracts only the exterior
contour points uniformly in one-degree steps for a 360-degree
sweep. The top view of a 3D extracted ROI and its 2D external
contour after being cleaned are shown in Fig. 3.

B. Features used for Quantification of the Deformation

This study uses both low-level and aggregate features to
produce six single-valued scores. Features 1 and 2 were used
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Fig. 2: Locating the base plane.

Fig. 3: Extracting a 2D external contour (right) by first
projecting the 3D surface mesh (left) onto a 2D plane (middle)
and keeping only the exterior points from the silhouette.

for classification in [6]. Single-valued features 3, 4, and 5 are
derived from the 360-D Angle feature in [6], which describes
the angle between a line with the slope of two neighboring
contour points and the horizontal axis as shown on the left of
Fig. 4.

1. Compare to Circle (cmp2C) compares the 2D contour to
a circle. A higher error score value indicates a less circular
skull. For instance, the skull in Fig. 3 is a less circular skull.

2. Symmetry (symCmp) compares the contour points of the
left and right sides to determine the symmetry of a skull. A
higher error score value indicates a more asymmetrical skull.

3. Average Slope Angle of Front Tip (front) and 4. Average
Slope Angle of Back (back) are the two averages of the Angle
vectors describing the front tip (shown in cyan in the middle
of Fig. 4) and the back (shown in cyan on the right of Fig. 4)
of a skull, respectively.

5. Change of Average Slope Angle Towards Front Tip (COA)
describes the angular difference between the average angle of
the front-center contour (shown in magenta in the middle of
Fig. 4) and the front-tip (shown in cyan in the middle of Fig.
4). For a more deformed metopic skull, the sharpness of its
front angle tends to reduce less from the center towards the
tip area.

6. Width to Length Ratio (w2l) describes the ratio of the
width to the length of a skull. This is the simplest and perhaps
the most widely used craniofacial feature, though not the
most powerful in this experiment. A more deformed sagittal
synostosis skull usually has a lower width to length ratio value.

Fig. 4: (left) Components of the Angle vector at two differ-
ent points along a contour; (middle) front-center contour in
magenta and front-tip contour in cyan; (right) back contour in
cyan.

III. EXPERIMENTS AND RESULTS

A. Clinician ranking orders

The 115-subject pre-surgery dataset used in this study
includes 57 sagittal, 33 left or right unilateral coronal, and 25
metopic skull images. Within each of these 3 synostosis cate-
gories, two medical doctors, Expert1 and Expert2, separately
used an interactive application to examine the 3D images and
rank them according to the degree of their shape-deformity
from least deformed (Rank 1) to most (Rank N).

B. Correlations and Ranking comparisons

For all the images in each of the three synostosis classes,
the six features that were described in Section II-B were
computed, followed by an analysis of the Spearman’s cor-
relation coefficients between these features and the ranking
orders provided by the two experts. Features that achieved
correlations close to or above 0.5 are shown for each of the
classes in the following order: 1) metopic, 2) sagittal, and 3)
uni-coronal. The ordering of the classes reflects the success of
the automated methods in correlating with the expert opinions.
Correlations between the two experts are also given and also
are highest for metopic, next highest for sagittal, and quite
low for uni-coronal.

Note that the use of all six features combined did not
improve correlation to the ranking orders provided by the two
clinicians. Our goal was to identify and use only the highly
effective features for deformity assessment and class ranking.

1) metopic class: As shown in Table I, the metopic ranking
orders from the two experts were highly correlated at 0.7723.
Nevertheless, a machine generated feature, COA, correlated
at 0.8019 to Expert1 and at 0.8592 to Expert2, the highest
correlation we found. As demonstrated on the left of Fig. 5, the
slope of the front contour changes less and remains sharp from
the center towards the tip of the more deformed skull. Another
feature, front, indicates the average angular slope sharpness of
the front tip. Feature front was correlated at 0.7261 to Expert1
and at 0.7281 to Expert2.

Fig. 6 and Fig. 7 show the top five most deformed and top
five least deformed metopic class skulls in order of ranking by
the COA feature and in comparison to the rankings of the front
feature and those assigned by Expert1 and Expert2. Here, the
four sets of ranking orders are reasonably consistent. However,
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Expert1 Expert2 COA front
Expert1 1 0.7723 0.8019 0.7261
Expert2 0.7723 1 0.8592 0.7287

COA 0.8019 0.8592 1 0.7411
front 0.7261 0.7287 0.7411 1

TABLE I: Correlation coefficients of metopic ranking orders.

Fig. 5: Illustration of a more shape-deformed metopic skull
(left), which has less angular change at the front of a skull
and a more persistent sharp angle towards the front tip, than
a less shape-deformed metopic skull (right), whose contour
gradually reduces in angular sharpness towards the front tip.

images
COA 25 most 24 23 22 21

Expert1 24 21 10 20 23
Expert2 25 24 21 23 22

front 25 13 15 18 23

Fig. 6: 5 metopic most shape-deformed skulls. COA and front
were machine ranked based on features that have demonstrated
high correlation to ranks provided by the two human experts.

images
COA 5 4 3 2 1 least

Expert1 7 3 5 4 1
Expert2 12 3 5 2 1

front 2 3 5 8 1

Fig. 7: 5 metopic least shape-deformed skulls.

the ranking of medium deformed skulls was less consistent,
as ranking results show in Fig. 8. One way to explain this is
to look at Fig. 9, where the horizontal axis shows the scoring
values provided by the COA feature and the red crosses and
blue asterisks show the rankings provided by Expert1 and
Expert2, respectively. There is close agreement on the most or
least scored skulls, but quite a lot of disagreement in between.

2) sagittal class: As shown in Table II, the sagittal ranking
orders from the two experts were moderately correlated at
0.5135. In contrast, a machine generated feature, back, cor-

images
COA 19 17 13 9 7

Expert1 9 22 16 15 13
Expert2 9 13 6 11 17

front 17 22 6 16 14

Fig. 8: 5 metopic inconsistently ranked skulls

Fig. 9: Ranking orders provided by the two experts in corre-
lation to machine ranking measure, COA.

related at 0.6512 to Expert1 and 0.5808, slightly less so, to
Expert2. As shown on the left of Fig. 10, the more angular is
the back of a sagittal skull, the more shape-deformed is the
skull. Feature cmp2C is also correlated to the shape-deformity
of a sagittal skull; the less circular is a sagittal skull, the more
shape-deformed it is (as shown on the left of Fig. 10). Feature
w2l is a simple ratio of width over length of a skull. It has
a negative correlation, therefore, to deformity; when the skull
is narrower or longer in proportion (also shown on the left of
Fig. 10), the ratio value is lower and the deformity is higher.
Feature w2l had a negative correlation of -0.4436, moderately
inversely correlated to Expert2 and only -0.3510 to Expert1.

Expert1 Expert2 back cmp2C w2l
Expert1 1 0.5135 0.6512 0.5190 -0.3510
Expert2 0.5135 1 0.5808 0.4868 -0.4436

back 0.6512 0.5808 1 0.8434 -0.7584
cmp2C 0.5190 0.4868 0.8434 1 -0.9450

w2l -0.3510 -0.4436 -0.7584 -0.9450 1

TABLE II: Correlation coefficients of sagittal ranking orders.

Figures 11, 12, and 13 show the five most deformed, five
least deformed, and five of the middle group of sagittal skulls
in order of ranking by the back feature and compared to the
cmp2C feature, Expert1, and Expert2. Again there is much
more agreement in the top five and bottom five groups and
much less in the middle, as one would expect.

3) unilateral coronal class: The unilateral coronal class
was most challenging. The experiment did not achieve good
results. The correlation between Expert1 and Expert2 was only
0.3165. The feature w2l showed a slightly higher correlation
of 0.3470 to Expert1 and almost no correlation to Expert2.
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Fig. 10: Illustration of a more shape-deformed sagittal skull
(left), whose back is more angular and as a whole, it is less
circular; whereas a less shape-deformed sagittal skull (right),
whose back is less angular and as a whole, it is more circular.

images
back 57 most 56 55 54 53

Expert1 37 56 48 50 53
Expert2 50 57 15 20 36
cmp2C 56 57 45 54 52

Fig. 11: 5 sagittal most shape-deformed ranks. Back and
cmp2C are machine ranked based on features that have demon-
strated high correlation to ranking orders from the two experts.

images
back 5 4 3 2 1 least

Expert1 14 3 2 5 7
Expert2 24 8 7 4 2
cmp2C 33 4 1 2 5

Fig. 12: 5 sagittal least shape-deformed ranks.

images
back 47 40 38 23 11

Expert1 11 20 54 6 15
Expert2 37 43 53 23 1
cmp2C 43 40 23 16 21

Fig. 13: 5 sagittal inconsistently ranked skulls.

Similarly, feature symCmp showed a correlation of 0.3240 to
Expert1 and hardly any to Expert2, as shown in table III.

Expert1 Expert2 w2l symCmp
Expert1 1 0.3165 0.3470 0.3240
Expert2 0.3165 1 0.0810 -0.0469

w2l 0.3470 0.0810 1 0.0917
symCmp 0.3240 -0.0469 0.0917 1

TABLE III: Correlation results of uni-coronal ranking orders.

IV. DISCUSSIONS AND CONCLUSIONS

In this paper, we have described a methodology for quan-
tifying skull deformity using six features obtained from a
projection of the top view of the skull of craniosynostosis sub-
jects. Our methods are simple, yet powerful, allowing feature
extraction even on low-quality CT images. Each of our features
allows a score to be assigned to a skull indicating the degree
of deformation according to that feature. In order to assess
the utility of our features, we computed correlations between
expert rankings of the skulls in each class and the rankings of
our program with each feature. For the metopic class, two of
our features, change of average slope angle towards front tip
and average slope angle of front tip, were highly correlated
with both expert rankings, which were also highly correlated
to one another. For the sagittal class, there was a medium
correlation between two of our features, average slope angle
of back and compare to circle, and the experts, and a medium
correlation between the two experts. For the unilateral coronal
case, two of our features, width to length ratio and symmetry,
achieved a low positive correlation with one of the experts,
and the experts had a low positive correlation with each other.
The different definitions of deformity used to assess severity
by the two experts, a pediatrician and a surgeon, may account
for some of their disagreement. The purpose of the computer
algorithms was to provide a consistent, non-subjective, and
precise measure of the deformation. The process of comparing
our rankings and those of the experts has produced a number
of new insights that we will employ in designing new features
and new scoring mechanisms.
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