
  

 

Abstract— There is a growing interest in identifying 

neuroimaging-based biomarkers for schizophrenia. Previous 

studies have shown both functional and structural brain 

abnormalities in schizophrenia patients. One main category of 

these findings consists of volumetric abnormalities in brain 

structure in different cortical and subcortical structures in 

patients’ brain. However there has been little work 

investigating changes in the brain’s functional volumes. Nor 

has there been work studying differences in brain networks as 

opposed to single regions. In this study, we investigated the 

volumes of functional networks as potential biomarkers. 

Independent component analysis was used to decompose fMRI 

images into maximally independent spatial maps and 

corresponding time-courses. Volume of functional networks 

was computed from subject-specific back reconstructed spatial 

maps. The results show that different nodes of the default-mode 

network exhibit volumetric abnormalities in schizophrenia 

patients. Interestingly these networks are larger in patients 

compared to controls.  

 

I. INTRODUCTION 

Population studies show that lifetime prevalence of all 

psychotic disorders is as high as 4% 

(http://www.nimh.nih.gov/statistics/SMI_AASR.shtml). 

These disorders can impair normal life significantly and 

impose huge societal cost [1]. Clinically, the patient's self-

reported experiences and observed behavior over the 

longitudinal course of the illness constitute the basis for 

diagnosis. The overlapping symptoms of mental disorders 

and the absence of standard biologically-based clinical tests 

make differential diagnosis a challenging task. Early 

diagnosis of these diseases can significantly improve 

treatment response and reduce associated costs. Also, 

discovering biomarkers can help us better understand the 

effects of the disease in the brain which can result in more 

effective drugs. 

The human brain has a well-identified structural and 

functional anatomy. Advances in neuroimaging technologies 
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in the past two decades have provided insight into the 

structure and function of the healthy human brain as well as 

many brain disorders such as schizophrenia. Schizophrenia 

is among the most prevalent mental disorders affecting about 

1% of the population worldwide [2]. This devastating, 

chronic heterogeneous disease is usually characterized by 

disintegration in perception of reality, cognitive problems 

and chronic course with lasting impairment [3]. Multiple 

structural and functional brain abnormalities are widely 

reported in patients with schizophrenia [4-6]. Volumetric 

structural abnormalities measured by magnetic resonance 

imaging (MRI) are the main category of these studies [7-13]. 

Neuroimaging studies using MRI have documented 

reductions in gray matter (GM) volume accompanied by 

proportionate increases in ventricular cerebrospinal fluid 

(CSF) volume. Also some studies showed volumetric 

abnormalities in subcortical structures such as thalamus and 

hippocampus [8, 14].  

Using functional connectivity methods, researchers 

have shown disrupted functional integration in schizophrenia 

patients [15-19]. Functional connectivity (FC) is defined as 

correlation (or other kinds of statistical dependency) among 

spatially remote brain regions [20]. There are also few 

researches on the abnormalities of the shape of functional 

networks [21-23]. There has been little work looking at 

functional volumes in single brain regions but no previous 

work investigating volume of functional networks. Each 

functional network may consist of multiple remote brain 

regions working together for performing specific tasks. Most 

of previous works reported abnormalities in default-mode 

network (DMN) [24]. The default mode network consists of 

several brain regions including parts of medial prefrontal 

cortex, medial parietal cortex, lateral parietal cortex, lateral 

temporal cortex, precuneus cortex anterior/posterior 

cingulated cortex (ACC/PCC). The default-mode network is 

hypothesized to support higher mental faculties including 

understanding others’ mental states, self-referential 

behavior, moral reasoning, recollection and imagining the 

future.  

In this study we investigate the volume of functional 

networks as potential biomarker for schizophrenia. Our 

dataset consist of fMRI data from healthy controls and 

schizophrenia patients. Independent component analysis 

(ICA) will be used to decompose the dataset into 

independent spatial maps and corresponding time-courses. 

We hypothesize that schizophrenic patients suffer from 

volumetric abnormalities in functional networks. To 

investigate this idea we will compare volumes of several 

well-known functional networks between the two groups.  
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II. PROCEDURE  

Participants consisted of 67 healthy controls and 55 chronic 

schizophrenia outpatients all of whom gave written, 

informed, IRB approved consent at Hartford Hospital and 

were compensated for their participation. Schizophrenia or 

bipolar disorder was diagnosed according to the criteria in 

the DSM-IV on the basis of a structured clinical interview 

administered by a research nurse and review of the medical 

file. Exclusion criteria included any participants with 

auditory or visual impairment, mental retardation (full scale 

IQ < 70), traumatic brain injury with loss of consciousness 

greater than 15 min, presence or history of any neurological 

illness. Participants were also excluded if they met criteria 

for alcohol or drug dependence within the past 6 months or 

produced a positive (assessed by urine toxicology screen on 

the day of scanning). 

Two runs of 244 stimuli were presented to the participant 

using a custom presentation package 

(http://nilab.psychiatry.ubc.ca/vapp/) and an MRI 

compatible sound system (Magnacoustics). The stimuli 

consisted of nontarget stimuli (1-kHz tones, 75% 

probability), target stimuli (1.5-kHz tones, 12.5% 

probability), and nonrepeating random digital noises (e.g., 

tone sweeps, whistles, 12.5% probability). The stimulus 

duration was 200 ms with a 1,800 ms interstimulus interval. 

Participants were instructed to respond as quickly and 

accurately as possible with their right index finger every 

time the target tone occurred and not to response to 

nontarget tones or novel stimuli.  

The system diagram for functional data analysis is 

illustrated in Figure 1. Data were preprocessed using SPM5 

software (http://fil.ion.ucl.ac.uk), motion corrected, spatially 

normalized into standard MNI space and slightly 

subsampled to voxel size 3 × 3 × 3 mm
3
, resulting in 53 × 63 

× 46 voxels. Next, spatial smoothing with a 10 × 10 × 10 

mm
3
 FWHM Gaussian kernel was performed.  

Functional dataset was analyzed using ICA. ICA is a 

multivariate data-driven method which as a blind source 

separation method, can recover a set of signals from their 

linear mixtures and has yielded fruitful results with fMRI 

data [25]. ICA estimates maximally independent 

components using independence measures based on higher-

order statistics. Compared to general linear model 

approaches, ICA requires no specific temporal model (task-

based design matrix). Depending on data matrix formation, 

one can perform either temporal or spatial ICA on fMRI 

data. Spatial ICA (sICA) is the predominant ICA approach 

used for fMRI data [26-28]. SICA decomposes fMRI data 

into a set of maximally spatially independent maps and their 

corresponding time-courses. Each thresholded sICA map 

may consist of several remote brain regions forming a brain 

functional network. Spatial ICA generates consistent spatial 

maps while modeling complex fMRI data collected during a 

task or in the resting-state  although the task can result in a 

subtle modulation of the spatial patterns [23].   

Prior to the ICA, data dimensionality was reduced at two 

levels using principal component analysis (PCA). First at the 

subject level, dimensionality was reduced to 80. Then 

reduced data from all subjects and all sessions were 

concatenated together and put through another reduction 

step. The number of components for the second level 

reduction was estimated to be 20 by minimum description 

length (MDL) criterion [29]. This is also the number of IC 

components. Note the MDL is a data driven approach, so it 

is not dependent on whether data are collected at rest or 

during a task. 

Infomax group sICA [26] was conducted to decompose 

the aggregated data into components using GIFT software 

(http://icatb.sourceforge.net/). SICA applied to fMRI data 

identifies temporally-coherent networks (TCNs) by 

estimating maximally independent spatial sources, referred 

to as spatial maps (SMs) and their corresponding time 

courses (TCs). Control and patient data were analyzed in one 

group ICA instead of two separate ICAs so that a tighter 

comparison between rest and task could be performed 

without additional variability induced due to trying to match 

components from separate ICA analyses.  

In order to estimate subject-specific SMs and TCs, a back-

reconstruction approach based on PCA compression and 

projection was used [28]. Subject-specific TCs were 

reconstructed separately for rest and task. Spatial maps were 

reconstructed and converted to Z values for each of the 

subjects. All of the components were visually inspected and 

the non-artifactual components were selected. 

III. RESULTS 

From the 19 ICA components, 9 components were selected 

as non-artifactual, relevant networks. Figure 2 illustrates the 

spatial maps of the selected IC components. These networks 

are: auditory network (IC #13), frontal-parietal networks (IC 

#4 and 6), default-mode networks (IC #1, 10 and 17), visual 

networks (IC #11 and 15) and motor network (IC # 16). 

Volumes of these 9 networks were compared between the 

two group using two sample t-test. The false discovery rate 

p-value threshold of 0.05 was used to identify significant 

differences. Figure 3 illustrate the mean volume of different 

functional networks for both groups. Table 1 summarizes the 

significant differences. Interestingly all three significant 

functional networks are parts of DMN.  

IV. DISCUSSION AND CONCLUSIONS 

We investigated whether functional volumetric 

abnormalities exist in schizophrenia patients or not. Using 

group ICA, the functional dataset was decomposed into 

spatial maps and associated time-courses. Three functional 

networks show significant volumetric differences between 

the groups. All these networks include regions from DMN. 

Surprisingly, mean volumes of these three functional 

networks are larger in the patients.  

It should be noted that functional data was collected 

during an auditory oddball task. Functional networks are 

cognitive-state dependent [23, 30] and the difference 

between patients and controls can be more or less in other 

cognitive-states or in the resting-state. 
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Figure 1: System diagram of functional data analysis 

 

 

 

 
Figure 2. Nine selected independent components 

 

 
Figure 3. Mean volume of functional networks (in cc) for both groups. Black bars show the standard error of the mean. Red 

stars indicate networks that survived two-sample t-test between the two groups (FDR corrected p-value of 0.05).  

 

Table 1. Significant functional volumetric differences between patients and controls 

Functional Network 

Volume (mm
3
) 

mean±std 

Controls 

Volume (mm
3
) 

mean±std 

Patients 

P-value 

IC 17 67620.8±4194.48 71053.2±3836.86 7.85E-06 

IC 1 80653.0±6542.44 84588.0±5946.35 7.92E-04 

IC 10 65954.5±5632.33 68033.1±4798.30 3.22E-02 
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