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Abstract—To perform large-scale simulations of the 

brain or build biologically-inspired cognitive 

architectures, it is essential to have a succinct and flexible 

model of spiking neurons.  The model should be able to 

capture the nonlinear dynamical properties of various 

types of neurons and the nonstationary properties such as 

the spike-timing-dependent plasticity (STDP).  In this 

paper, we propose a generalized Laguerre-Volterra 

modeling approach for such a task.  Due to its built-in 

nonlinear dynamical terms, the generalized 

Laguerre-Volterra model (GLVM) can capture various 

biological processes/mechanisms.  Using Laguerre 

expansion of Volterra kernel technique, the model is fully 

represented with a small set of coefficients.  The 

calculation of the model variables can be expressed 

recursively based on only the current and the 

one-step-before values and thus can be performed 

efficiently.  In addition, we show that, using the same 

methodology, STDP can be implemented as a specific 

form of second-order Volterra kernel describing the 

causal relationship between pairs of input-output spikes 

and the changes of the feedforward kernels in the 

GLVMs.     

I. INTRODUCTION 

ARGE-SCALE simulation of the brain and 

biologically-inspired cognitive architecture have become 

two of the most active and promising fields of computational 

neuroscience and neural engineering.  Consistent with the 

“neuron doctrine” of Ramon y Cajal, their applications often 

involve building large-scale networks of spiking neuron 

models to (a) emulate the emergent population-level 

behaviors of the brain, or (b) mimic the higher-order 

cognitive functions to solve real life problems.   

A successful spiking neuron model should keep a good 

balance between the biological realism and the computational 

efficiency.  The former is required for biological 

interpretation and validation since it is elucidative to be able 
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to relate the model variables to the observable biological 

processes/mechanisms.  In addition, the biological 

processes/mechanisms are likely to be the indispensable 

components for achieving real brain-like functions, and thus 

have to be included into the model.  On the other hand, the 

computational efficiency, obviously, is necessary for 

practical software/hardware implementations of the model.  

Furthermore, a succinct representation of neurons may also 

facilitate biological interpretations since it highlights the 

functional properties of the neuron. 

 
 

Figure 1.  Spike neuron model with spike-timing-dependent plasticity as 
computational unit of a biologically-inspired cognitive architecture 

    

 In this study, we propose a generalized Laguerre-Volterra 

modeling approach for building spike neuron models for both 

large-scale simulations and biologically-inspired cognitive 

architectures.  In our previous works [1, 2, 3], generalized 

Laguerre-Volterra model (GLVM) has been intensively used 

in (a) the identification of neural functional connectivities, 

and (b) the development of hippocampal memory prostheses.  

Due to its built-in nonlinear dynamical terms, a GLVM can 

capture accurately various biological processes/mechanisms 

such as post-synaptic potential (PSP), paired-pulse 

facilitation/depression, augmentation, spike generation, and 

output spike-triggered after-potential (AP), with a small set of 

model coefficients resulted from Laguerre expansion of the 

Volterra kernels.  In addition, we extend the GLVM to 

include spike-timing-dependent plasticity (STDP) as a 

specific form of second-order Volterra kernel modeling the 

causal relationship between pairs of input-output spikes and 

the changes of the feedforward kernels in the GVMs.  All 

model calculation can be performed efficiently in a recursive 

manner.   
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II. METHODOLOGY 

A. Spiking neuron model 

The spiking neuron model has a physiologically plausible 

structure (Fig. 1, left) that can be expressed as: 
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The variable x represents input spike trains; y represents 

output spike train; w represents the pre-threshold membrane 

potential of the output neurons, that is expressed as the 

summation of the post-synaptic potential u caused by input 

spike trains, the output spike-triggered after-potential a, and a 

Gaussian white noise ε with standard deviation σ.  A 

threshold, θ, determines the generation of the output spike 

and the associated feedback after-potential (a).  In this mode, 

the transformation from x to u is described as a set of 

feedforward Volterra kernels k.  The transformation from y to 

a is described by a feedback Volterra kernel h.  
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First order kernel k1 can be interpreted as the PSP elicited 

by a single input spike; second order self-kernel k2s can be 

interpreted as the paired-pulse facilitation/depression 

function.  Second order cross-kernels k2x describe the 

pair-wise nonlinear interactions between each unique pair of 

inputs as they affect u.  The feedforward kernels provide a 

quantification of the synaptic strength between the input 

neurons and the output neuron. 

To reduce number of parameters and avoid overfitting, 

Laguerre basis functions b are utilized in model estimations. 
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 Laguerre parameter α controls the rate of exponential 

decay of the basis functions.  The larger α is, the slower b 

decay.  With input and output spike trains x and y convolved 

with b: 
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u and a can be rewritten into: 
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c are the kernel coefficients.  Given the kernels are smooth 

and continuous functions, the number of basis functions J can 

be much smaller than the memory length (Mk and Mh).  Since 

v and vv can be calculated from the known x, y and b.  The 

Volterra series essentially expresses the nonlinear 

relationship between u and x into a linear relationship 

between u and [v, vv].  The joint effect of the threshold θ and 

the Gaussian noise ε is equivalent to a probit link function 

that maps the value of u + a into the probability of y is equal to 

1.  The whole model thus can be expressed as a generalized 

linear model with the nonlinearity structured in the Volterra 

series.  Therefore, this MISO model can be termed as a 

generalized Laguerre-Volterra model (GLVM). 

The kernels quantitatively describe the input-output 

nonlinear dynamics of the neuron.  A more intuitive 

representation is the single-pulse and paired-pulse response 

functions (r1 and r2) derived from the kernels. 
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nr is essentially the postsynaptic potential (PSP) elicited 

by a single spike from the n
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 input neuron; 
)(

2

nr describes the 
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represents the joint nonlinear effect of pairs of spikes with 

one spike from neuron n1 and one spike neuron n2.   

B. Implementation of STDP 

STDP is essentially a specific form of synaptic learning 

rule that maps the pair-wise interactions between input and 
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output spikes to the changes of the synaptic weight.  In the 

GLVM, synaptic weight is represented as the first-order 

feedforward kernel k1 and the learning rule can be expressed 

in a Volterra form as:  
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L2 is the second-order cross kernel between input x and 

output y for the learning rule.  It is determined by the STDP 

function [4], which provides the steady-state LTP/LTD 

magnitude, and the STDP induction function I, which 

describes the transience of the STDP.  With appropriate L2 

shape, k will be changed by the timings of the input and 

output spikes.  In turn, k governs the generation of output 

spikes based on the input spikes.  The spiking neuron model 

and the STDP then can be implemented with a recursive 

manner.   

C. Recursive model calculation 

A nice property of the Laguerre basis functions is that they 

can be calculated recursively as:  
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Even more conveniently, v, the convolutions of L and x, 

also can be calculated recursively as:  
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In this recursive formula, the jth-order v at time t depends 

on only the one-step-before value of v, the current value of the 

one-order-lower v, and the one-step-before value of the 

one-order-lower v.  The calculation is strictly local, with the 

arbitrarily long memory length M embedded.  This formula 

has great advantages in hardware implementation [5].    

 

 

III. RESULTS 

A. GLVM for spiking neurons  

We have implemented the GLVMs for spiking neurons in 

Matlab®.  The code uses the recursive calculation and can 

simulate various biological processes with its kernels 

functions (Fig. 2).  Figure 2 shows biological 

processes/mechanisms captured by the model. 

 
 
Figure 2.  Various biological processes/mechanism captured by the GLVM 

of spiking neurons 

B. Laguerre-Volterra expression of STDP 

We expand the learning rule kernel with three sets of 

Laguerre basis functions as: 
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In the equations above, c are the sought learning rule 

coefficients.  They are split into cxy and cyx to represent the 

two halves of the cross kernel for x preceding y and y 

preceding x, respectively. Subscript A represents the STDP 

amplitude.  Subscript ψ represents the STDP induction.  With 

appropriate coefficients, L2 can be reconstructed as: 
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Figure 3 shows the derivation of L2 for the STDP and 

induction functions.  With this equivalency, STDP is realized 

in the form of a second-order cross kernel between input x and 

output y, that can be implemented with the same recursive 

calculation for the GLVM of spiking neurons. 

 

 
 
Figure 3.  Relationship between the STDP function, the induction function 

(I), and the second-order cross kernel (k2x) of input (x) and output (y).  Left 

column: STDP function.  Center middle: the integral of the STDP function in 
k2x.  Right column: the induction function I and its representation in k2x.  The 

integral of I describes the STDP dynamics.  The STDP function determines 

the steady-state change of the synaptic weight k.  Center top: the k2x 
representation of the STDP function and the induction function.  This k2x is 

calculated as the element-wise product of the k2x of STDP function and the k2x 

of I.  Note that I is not plotted in scale for better visualization. White arrows 
indicate the directions of the STDP and induction functions in the cross 

kernel. 

C. Simulation of a GLVM of spiking neuron with STDP 

We have implemented the GLVM of spiking neuron with 

the STDP learning rule.  In this model, the first-order 

feedforward kernel k1 has a typical EPSP shape determined 

by 3 Laguerre basis functions.  The peak amplitude is 0.3.  

The feedback kernel has a negative exponential shape fit with 

a single zeroth-order Laguerre basis function.  The peak 

amplitude is -1.  To run the simulation, input spike train x is 

fed into the model to generate output spike train y.  The 

synaptic strength between the input and output neurons, i.e., 

k1, is changed following the standard STDP rule and the 

induction function.  In this simulation, the shape of k1 remains 

the same; only the amplitude is changed.  The left (LTD) half 

of the STDP function is a single exponential (fit with one 

zeroth-order Laguerre basis function) with time constant and 

peak amplitude at 33.7 ms and -0.018.  The right (LTP) half 

of the STDP function is a single exponential (fit with one 

zeroth-order Laguerre basis function) with time constant and 

peak amplitude at 16.8 ms and 0.032.  Both sides share the 

same induction function determined by 3 Laguerre basis 

functions.  The total length of simulation is 200 s.  Figure 4 

shows how the peak amplitude of k1 fluctuates over time 

following the STDP functions. 

 

 
 

Figure 3.  Simulation of a GLVM of spiking neuron with STDP 

IV. DISCUSSION 

This paper presents a GLVM approach for building spiking 

neuron model with STDP.  Different from the previous 

identification models on STDP [6, 7], the aim of this model is 

to serve as the computational unit for large-scale brain 

simulations and biologically-inspired cognitive architectures, 

taking advantages of its flexibility and succinctness.     
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