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Abstract— Coupled nonlinear oscillator models of EEG sig-
nals during resting eyes-closed and eyes-open conditions are
presented based on Duffing–van der Pol oscillator dynamics.
The frequency and information entropy contents of the output
of the nonlinear model and the actual EEG signal is matched
through an optimization algorithm. The framework is used to
model and compare EEG signals recorded from Alzheimer’s
disease (AD) patients and age-matched healthy controls (CTL)
subjects. The results show that 1) the generated model signal
can capture the frequency and information entropy contents of
the EEG signal with very similar power spectral distribution
and non-periodic time history; 2) the EEG and the generated
signal from the eyes-closed model are α band dominant for
CTL subjects and θ band dominant for AD patients; and 3)
statistically distinct models represent the EEG signals from AD
patients and CTL subject during resting eyes-closed condition.

I. INTRODUCTION

Alzheimers disease (AD) is the most common form of
brain disorder among older people. While no known cure
exists, a few medications have shown promise in delaying its
symptoms [1] prompting researchers to seek early diagnosis
and intervention strategies. Electroencephalograph (EEG)
recording and signal processing is a potential non-invasive
tool that may aid early diagnosis of AD. However, the use
of EEG signal analysis to aid the diagnosis of AD is a
complex problem and current methods require significant
improvement [2].

There are several approaches to the EEG signal analysis
with Fast Fourier Transform (FFT) being the most widely
method [2]–[4]. Another popular approach suitable for EEG
signal processing is wavelet transform since it provides both
frequency and time information for the transient signal [5].
However, all these methods are based on linear transforma-
tion and cannot capture the nonlinear properties of EEG sig-
nals [6]. Hence, nonlinear approaches have been introduced
to capture the EEG nonlinear properties mainly through
computationally complex time series analysis [7]. Examples
of nonlinear approaches include neural mass model [8],
coupled oscillators [9], nonlinear non-stationary model [10],
random neural networks [11], and chaotic phenomena [12].

Limit cycle oscillators [13], [14] have also been considered
in EEG modeling which suggest that a stochastic limit cycle
behavior represents the EEG signal better than a description
based on chaotic phenomena. Motivated by these studies and
preliminary results from our stochastic coupled oscillators
[15], we present a framework to model the EEG signal as the
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stochastic response of a coupled nonlinear oscillator system.
Specifically, the EEG signal is modeled as the output of a
coupled Duffing - van der Pol oscillator [16], [17].

We present a novel framework to study the EEG, modeling
the signal as the stochastic response of a coupled nonlinear
oscillator system. Preliminary results [15] has shown that a
coupled nonlinear Duffing oscillator model with only two
degrees of freedom can capture the linear characteristics of
the EEG signal in the major brain EEG frequency bands.
However, they also highlighted the need for improved models
that can generate outputs to match actual EEG data with
reference to nonlinear metrics. Hence, a coupled system of
Duffing - van der Pol oscillators [16], [17] is proposed and
analyzed in this study.

The procedure is as follows. A global optimization al-
gorithm is employed to match the output of the stochastic
ordinary differential equation (ODE) model with each EEG
signals in terms of power spectrum and information content
as measured by Shannon entropy [18]. The model parameters
representing AD patients are then compared with those
of healthy controls (CTL) in order to establish statistical
significant distinct models for AD and CTL under resting
eyes-closed (EC) and eyes-open (EO) conditions.

II. METHODS

A. EEG data and Signal Processing

The EEG data used in this study are from an approved
pilot study of AD patients versus age matched health control
(CTL) subjects [19]. The recording device is a single-dry
electrode at Fp1 (based on a 10-20 electrode placement sys-
tem). The effective sample rate of the device is 125 Hz and
its reliable frequency range is 2-30 Hz. Artifacts are removed
from the EEG data using an artifact detection algorithm [19].
EEG recording blocks of 40-second duration which provides
approximately 5000-sample signals are selected for analysis.
In all, 60 random blocks are selected from the pilot study:
40 blocks from CTL subjects (20 EC and 20 EO) and 20
blocks from AD patients (10 EC and 10 EO).

Two measures are used to quantify the EEG signal proper-
ties: power spectrum and Shannon entropy. Short time FFT
with sliding window is performed on the EEG signal and the
time-varying power spectrum corresponding to major brain
frequency band are calculated as a linear measure. The power
spectrum is computed in seven bands, including the lower δ
(1 – 2 Hz), upper δ (2 – 4 Hz), θ (4 – 8 Hz), α (8 – 13
Hz), lower β (13 – 20 Hz), upper β (20 – 30 Hz), and γ

(30 – 60 Hz). γ and lower δ bands are ignored since they
are unreliable and possess little power. Shannon entropy is
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Fig. 1. Schematic of the coupled Duffing–van der Pol oscillators.

used as a nonlinear measure representing predictability and
complexity of the EEG signal [20].

B. The Coupled Duffing - van der Pol Oscillators Model

EEG is modeled as the output of a coupled system of
two Duffing - van der Pol oscillators subject to white noise
excitation, as shown in 1. The equations of motion of the
system may be written as:
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where x1, ẋ1, ẍ1 and x2, ẋ2, ẍ2 are positions, velocities and
accelerations of the two oscillators, respectively. Parameters
k1, b1, ǫ1 and k2, b2, ǫ2 are, respectively, linear stiffness,
cubic stiffness, and van der Pol damping coefficient of the
two oscillators. Parameter µ represents the intensity of white
noise and dW is a Wiener process [21] representing the
additive noise in the stochastic differential system.

C. Optimization Formulation

A global optimization search method based on a multi-
start algorithm [22] is emplyed to determine the oscillator
model parameters. We selected the velocity of the second
mass as the output of our model. The cost function is the
weighted average of the root mean squared of the errors in
power spectrum of selected brain frequency bands and error
in Shannon entropy. Hence, the cost function J is written as:

min
p

J =

√

√

√

√

m
∑

j=1

(PEj − POj)2 + w|SE − SO|, (2)

where p = [k1, k2, b1, b2, ǫ1, ǫ2, µ] represents the decision
variables, PEj and POj are the powers in the major brain
frequency bands, m is number of frequency bands (m = 7),
and SE and SO are the Shannon entropies of the EEG signal
and the model output, respectively, and w is a weighting fac-
tor. Note that, the magnitude of the EEG and output signals
are normalized with respect to their standard deviations.

The optimization problem is subject to constraints repre-
sented by the state equations and lower and upper bounds
for the decision variable which are defined as:

0 ≤ µ ≤ 2, 0 < ki ≤ 1e4, 0 < bi ≤
1

2
ki,

0 < ǫi ≤
1

3
ki, i = 1, 2.

(3)

The constraints for bi and ǫi were imposed in order to
avoid the chaotic regime [23]. Practically, these constraints

TABLE I

OPTIMAL MODEL PARAMETERS FOR CTL.

Parameter EC EO
k1 1,345.5 ± 282.2 6,308.1 ± 79.9
k2 4,255.4 ± 593.9 3,742.0 ± 96.2
b1 40.78 ± 19.7 196.9 ± 8.0
b2 296.7 ± 39.7 310.31 ± 37.5
ǫ1 283.55 ± 30.8 1,496.1 ± 16.4
ǫ2 2.50 ± 1.2 5.19 ± 0.6

TABLE II

OPTIMAL MODEL PARAMETERS FOR AD.

Parameter Eyes-Closed (EC) Eyes-Open (EO)
k1 6,028.7 ± 93.7 6,123.9 ± 112.5
k2 3,722.2 ± 198.1 3,800.1 ± 440.7
b1 194.8 ± 0.2 202.5 ± 13.6
b2 317.1 ± 7.6 300.65 ± 25.6
ǫ1 1,478.7 ± 22.7 1,510.2 ± 47
ǫ2 4.99 ± 0.005 5.2 ± 0.5

maintain a periodic response for the deterministic system
when µ = 0. Noise intensity is also constrained to avoid
a response dominated by random noise. The initial guesses
for the global optimization search are randomly generated
within the bounds defined in Eqn. (3).

III. RESULTS

In order to reduce computation complexity, the opti-
mization algorithm is employed in two stages. First, the
noise-free deterministic model is optimized to capture the
frequency content and limit cycle characteristics of the EEG
blocks. Next, the noise interaction is optimized to capture the
information content and predictability of the EEG blocks.

A. Deterministic Model

The self-excited, deterministic Duffing–van der Pol system
is considered first, i.e. µ = 0. Using the global optimization
algorithm with cost function of Eqn. (2) with w = 0 subject
to constraints in Eqn. (1) and Eqn. (3), the optimal model
parameters are derived for each of the 60 EEG block. The
mean and standard deviation of the optimal values of model
parameters for the 40 blocks from CTL subjects are presented
in Table I and for the 20 blocks from AD patients in Table
II.

The mean and standard deviation of the frequency band
powers for the optimal model and EEG signals show good
agreement for CTL and AD subjects, as presented in Tables
III and IV for EC and EO cases, respectively. The com-
parison reveals that for CTL subjects, the model is closely
following the α-band dominance in the EC cases [24]. While,
in the EO cases, the model and EEG follow a more flat
frequency distribution from upper δ to lower β frequency
bands. Furthermore, the model and EEG signal are θ-band
dominated in the EC cases for AD patients as previously
reported [19]. Another interesting observation is that the
difference between frequency content of EC and EO EEG
of AD patients is not as clear as it is for CTL subjects.
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TABLE III

BRAIN BAND POWERS FOR EC CASE.

Freq. EEG Model EEG Model
Band CTL CTL AD AD
δL .02 ± .01 .00 ± .00 .04 ± .03 .00 ± .00
δU .08 ± .04 .10 ± .02 .15 ± .04 .17 ± .02
θ .20 ± .05 .19 ± .06 .40 ± .06 .41 ± .05
α .49 ± .10 .50 ± .09 .21 ± .05 .27 ± .03
βL .12 ± .03 .17 ± .06 .10 ± .02 .10 ± .04
βU .05 ± .02 .03 ± .02 .05 ± .02 .05 ± .01
γ .02 ± .01 .00 ± .00 .02 ± .01 .01 ± .00

TABLE IV

BRAIN BAND POWERS FOR EO CASE.

Freq. EEG Model EEG Model
Band CTL CTL AD AD
δL .05 ± .03 .00 ± .00 .04 ± .04 .00 ± .00
δU .15 ± .05 .14 ± .02 .18 ± .08 .18 ± .03
θ .27 ± .04 .30 ± .04 .33 ± .04 .38 ± .09
α .23 ± .04 .29 ± .06 .22 ± .09 .28 ± .08
βL .17 ± .04 .20 ± .04 .11 ± .03 .11 ± .03
βU .10 ± .05 .05 ± .01 .08 ± .03 .05 ± .01
γ .03 ± .02 .01 ± .01 .03 ± .01 .01 ± .00

This makes it more difficult to derive statistically significant
distinct oscillator models of EC and EO EEG signals for AD
patients.

1) Statistical Analysis: An essential objective of our ap-
proach is to be able to establish a statistically significant cor-
respondence between variations in model parameters and the
variations in actual data due to state and health of the brain.
Hence, the statistical significance of differences between
model parameters of the EC and EO EEG recordings of AD
patients and CTL subjects is assessed. Two methods, t-test
and non-parametric Wilcoxon rank sum test, are employed
for univariate statistical analysis since the normality test is
not consistently satisfied. In the EC case, all model parameter
differences between AD and CTL subjects are found to be
statistically significance except b2. However, only k1 is found
to be statistically significance in the EO case. Therefore,
the coupled Duffing–van der Pol model is more effective in
distinguishing between AD patients and CTL subjects when
EC EEG recordings are used.

Next, a power analysis is conducted to determine the
influence of the sample size on the statistical testing results
between AD and CTL [25]. The results for powers of 90%,
95%, 99%, and 99.9% are listed in Table V for EC cases.
The actual difference between means are presented within
parentheses following each parameter. Thus, the EC sample
size is sufficient for parameter k1 with more than 99% power,
for b1, ǫ1, and ǫ2 with more than 99.9% power, and for k2
with less than 90% power. Note that, the t-test did not show
b2 to be statistically significant and thus the power confidence
need not be established. For the EO case, the testing results
was significant only for k1 with more than 99% of power.

TABLE V

REQUIRED MEAN DIFFERENCE FOR EC.

Parameter 90 % 95 % 99 % 99.9 %
∆k1 (4674) 346 385 457 540
∆k2 (533) 727 810 961 1136
∆b1 (154) 24 26 31 37
∆b2 (20) 49 53 63 75

∆ǫ1
(1195) 41 46 55 65

∆ǫ2
(2.4) 1.5 1.7 2.0 2.4

B. Stochastic Model

Preliminary results from our recent work [15] as well
as other literature [26], [27] suggest that the EEG must
be treated as a stochastic signal. Hence, the optimization
procedure is carried out with respect to the intensity of the
external white noise excitation while keeping other model
parameters equal to the values derived in the deterministic
case. Also, Shannon entropy is taken into account using the
optimization cost function of Eq. (2) with w = 0.2.

The optimal noise intensity for models of the CTL subjects
are derived as 1.1 ± 0.36 for EC and 0.49 ± 0.28 for EO.
The corresponding Shannon entropy of the output signals
are derived as 1.93 ± 0.12 for EC and 1.72 ± 0.09 for
EO compared with the actual EEG Shannon entropies of
1.79± 0.08 for EC and 1.71± 0.11 for EO EEG recordings.
Similarly, the optimal noise intensity for models of the AD
patients are derived as 0.36 ± 0.1 for EC and 0.33 ± 0.12
for EO. The corresponding Shannon entropy of the output
signals are derived as 1.74 ± 0.09 for EC and 1.79 ± 0.07
for EO compared with the actual EEG Shannon entropies of
1.78± 0.03 for EC and 1.63± 0.32 for EO EEG recordings.
The noise intensity model difference between AD and CTL
subjects for EC cases are found to be statistically significant
with p-value of 0.002 and .004 for t-test and non-parametric
test, respectively.

C. Signal Comparisons

Sample EC EEG power spectrum power and those of the
outputs of the optimal deterministic and stochastic oscillator
models are shown in Fig. 2 for a CTL subject. These
plots demonstrate that for the CTL subject, the EC is α

band dominated. Note that, the deterministic model has
resonance peaks repeated at very discrete frequencies while
the stochastic model has a broader frequency distribution
similar to the actual signal.

IV. CONCLUSION

We presented EEG signal modeling through stochastic
coupled nonlinear oscillators. The results showed that our
framework can capture frequency and information entropy
contents of actual EEG signal in resting EC and EO condi-
tions. We further applied the technique to EEG signals from
AD patients and CTL subjects and showed that the method
can provide distinct models with statistically significant
parameters under resting EC condition. However, due to flat
distribution of the frequency content of EEG signal in EO
conditions, the framework did not yield distinct EO models.
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Fig. 2. Power spectrum of a sample CTL subject EC EEG signal (top),
deterministic model (middle), and stochastic model (bottom).

The power spectrum comparison showed that the generated
signal from the EC model is α dominant for CTL subject
and θ dominant for AD patients, as observed in the actual
EEG signal. In summary, the results show that the stochastic
nonlinear dynamic modeling of EEG signal has the potential
to aid in early diagnosis of Alzheimer’s disease.
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