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Abstract— Biomedical signals aid in the diagnosis of different
disorders and abnormalities. When targeting lossy compression
of such signals, the medically relevant information that lies
within the data should maintain its accuracy and thus its
reliability. In fact, signal models that are inspired by the bio-
physical properties of the signals at hand allow for a com-
pression that preserves more naturally the clinically significant
features of these signals. In this paper, we illustrate this through
the example of EEG signals; more specifically, we analyze
three specific lossy EEG compression schemes. These schemes
are based on signal models that have different degrees of
reliance on signal production and physiological characteristics
of EEG. The resilience of these schemes is illustrated through
the performance of seizure detection post compression.

I. INTRODUCTION

Nowadays medical information management systems and
transmission of biomedical signals are widely used in hos-
pitals and clinics. In addition, transmission of biomedical
signals allows medical experts to remotely evaluate the
information carried by the signals in a cost-effective manner.
The massive amount of data requires large storage space
and channel bandwidth and therefore, this problem calls for
efficient compression methods.

There is a need to efficiently compress biomedical signals
while preserving the important diagnostic-oriented informa-
tion that lies within this data. Lossless compression guar-
antees no added distortion and therefore the data remains
reliable for medical analysis. Although lossless compression
is more desired for medical signals, higher compression rates
can be achieved using lossy techniques.

When targeting lossy compression for biomedical signals,
more focus should be given on retaining medically relevant
information. And thus, when coding the signals, more em-
phasis should be given to this particular aspect of the data
in order to achieve good compression performance. In this
paper, taking the example of Electroencephaogaphy (EEG)
signals, we argue that biomedical signal compression systems
that take into account more effectively the underlying nature
of the signal lead to better results, in terms of the preservation
of clinically significant features after compression. In the
next paragraphs we will focus on the characteristics of EEG
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signals, more specifically, on the underlying generators and
the different neurological aspects of these signals.

Most observed scalp EEG activity is generated within the
cerebral cortex [1]. A synchronous synaptic simulation of
a very large number of neurons results in a dipolar current
source oriented orthogonal to the cortical surface [1]. The
measured EEG is actually the propagation of this current
onto the different electrodes’ locations.

Thus, EEG signals can be considered as projections of
certain activities that are occurring inside the cerebral cortex.
These projected electrical signals are measured from certain
locations on the patient’s head, i.e. electrodes. Since certain
neurological components are behind these observations, a lot
of redundancy is present. This redundancy can be directly
seen between the different recording channels. This is known
as spatial redundancy.

EEG is used to diagnose certain disorders and also in sleep
analysis, known as polysomnography. These signals reflect
the state of the patient. In fact, the different functional stages
of a patient’s state of mind can be characterized by certain
EEG rhythms or brain waves [2]. Brain activity of EEG
signals is usually divided into five main frequency rhythms:
delta (0 - 4 Hz), theta (4 - 8 Hz), alpha (8 - 13 Hz), beta
(13 - 30 Hz) and gamma (30 - 100 Hz) [3, p. 33] [2]. The
presence or absence of these waves during certain periods
of recording can help determine certain abnormalities. Since
these rhythms tend to naturally extend and repeat during
different stages of the EEG recording, there is redundancy
present at certain frequency sub-bands between different
periods of recording.

When compressing these signals, the neurological charac-
teristics that are usually used in the medical analysis of these
signals can help achieve better analysis and approximation
and thus better remove redundant information.

We recently suggested three different methods that target
the compression of scalp EEG data using different modelling
and coding techniques [2][4][5]. These methods were devel-
oped while focusing on the neurological characteristics of
these signals.

The first method is based on using classic transformation
and coding techniques to compress the EEG recordings while
focusing on spatial redundancy [4]. The second method
explores a common physiological characteristic of the EEG
signals, more specifically brain waves, in order to develop
appropriate compression methods. It focuses on extracting
the redundancy present at specific frequency bands to achieve
decorrelation at different time instances [2]. In the third
method, the underlying physiological sources behind the

978-1-4244-7929-0/14/$26.00 ©2014 IEEE 697



observed signals on the scalp are explored. The observed
signals are modelled using these sources which help in
extracting the mutual information present between the EEG
channels [5].

In this paper, these three different methods are first pre-
sented. Afterwards, performance results in terms of post
compression seizure detection are shown. This recently pro-
posed qualitative measure that is used to compare the original
and reconstructed signals provides a better reflection of the
information loss with respect to the medically relevant data
[6] [2]. A comparative analysis that discusses the weaknesses
and strengths of each suggested method is then presented.
The paper ends with a conclusion and suggestions for future
work.

II. COMPRESSION METHODS

A. Pre-Processing of Multi-Channel EEG for Improved
Compression Performance using Set Partitioning in Hierar-
chical Trees (SPIHT)

As previously mentioned, in scalp recordings, EEG signals
measured from certain locations on the scalp can be seen
as the projection of activity located inside the brain [4].
In fact, EEG channels display a lot of similarity and even
superposition of the different signals. Thus looking at these
recordings in the spatial dimension, i.e. between different
channels, is very important in capturing this redundancy [4].

The first method uses discrete wavelet transform (DWT)
and SPIHT in 2D to code the EEG channels [7] [8] [4].
Thus, it makes use of the inter-channel redundancy present
between different EEG channels of the same recording and
the intra-channel redundancy between the different samples
of a specific channel. SPIHT was originally suggested for
the compression of 2D images, thus this method exploits
the basic characteristics of this type of data. More precisely,
it exploits images characteristics where most of the image’s
energy is located in the low frequency components and there
is spatial self-similarity among the sub-bands [4].

In this SPIHT-based method, classic compression tech-
niques that are initially targeted for 2D images are applied
on matrices of EEG recordings. However, pre-processing is
performed as first step in order to optimize the performance
of these coders on the characteristics of our signals [4].

B. Dynamic Dictionary for Combined EEG Compression
and Seizure Detection

When analyzing EEG signals for the purpose of medical
diagnosis, brain waves are identified in order to find the
different functional stages of a patient’s state of mind. As
previously mentioned, these different rhythms can be used to
characterize the different EEG segments [2]. Thus, depending
on the state of mind of the patient, brain waves tend to extend
and repeat throughout different segments of recording. This
creates redundancy between the segments.

The second suggested method, dictionary-based method,
aims at comparing EEG segments of different time peri-
ods and extracting the redundancy present between these
segments. To do that, this technique focuses on the energy

in the different frequency sub-bands that correspond to the
different brain rhythms. DWT, dynamic reference lists and
SPIHT are used to compute and code the decorrelated sub-
band coefficients. This method is able to both compress EEG
channels and detect seizure-like activity [2].

Therefore, this method uses a physiological characteristic
of EEG signals, which is the different brain waves, in order
to analyze the signals and remove the intrinsic redundancy
between the different segments in a single EEG channel.

C. EEG Compression of Scalp Recordings based on Dipole
Fitting

As previously mentioned, there are certain neuronal gen-
erators that are behind the observed EEG signals [9] [5].
In fact, the non-invasive localization of these generators is
known as the inverse solution and is used in the medical
analysis of EEG. Finding a solution to the inverse problem
by relying on the pattern of recorded EEG is able to
give us a model that maps the generators to the measured
projections on the scalp [9]. Therefore, having solved the
inverse problem, one can use such a model to generate,
from the calculated dipoles, an approximation of the EEG
recordings. This is known as the forward problem [5].

This third method, dipole-based method, provides a deeper
analysis of the intrinsic dependency inherent between the
different EEG channels. It is based on dipole fitting that is
usually used in order to find a solution to the classic problems
in EEG analysis: inverse and forward problems [9] [10]. The
suggested compression system uses dipole fitting as a first
building block to provide an approximation of the recorded
signals. Then, based on a smoothness factor, appropriate
coding techniques are suggested to compress the residuals
of the fitting process.

III. RESULTS AND DISCUSSIONS

As previously mentioned, in medical signals, it is im-
portant to move towards a diagnostics-oriented performance
assessment [6] [2]. In the next section we will focus on an-
alyzing the performance of the three suggested compression
methods using an automatic seizure detection system Stellate
Harmonie System [6] [2].

A. Dataset

Data used in the testing, known as CHB-MIT Scalp EEG
Database, was collected at the Children’s Hospital Boston
[11]. Recordings are done on pediatric patients suffering
from intractable seizures. These recordings are annotated by
medical experts and are sampled at 256 Hz and 16 bits used
in the recording’s precision.

B. Statistical Measures used in Detection Analysis

In order to test the performance of the different methods on
the chosen datasets, the pre-processor of Stellate Harmonie,
ICTA-S onset detector, is used. Detection is done using three
different features. The first feature, relative voltage amplitude
is computed using a background section of the signal chosen
to represent the current state of the EEG prior to the occur-
rence of the seizure. The second feature, relative frequency
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TABLE I: Detection results with Stellate Harmonie tested at 16 bps as Ground Truth.
Dipole-Based 1D Dictionary-Based 2D SPIHT-Based

2 bps 4 bps 2 bps 4 bps 2 bps 4 bps
T P (%) FP T P (%) FP T P (%) FP T P (%) FP T P (%) FP T P (%) FP

Detections Count Count Count Count Count Count
6 83.33 1 100 0 100 0 83.33 1 83.33 1 100 0
1 100 0 100 0 100 0 100 0 100 0 100 0
9 88.89 1 100 0 88.89 1 100 0 88.89 1 88.89 1
6 100 0 50 3 33.33 4 50 3 16.67 5 0 6
8 87.5 1 87.5 1 100 0 100 0 100 0 100 0
25 88 3 100 0 100 0 100 0 60 10 96 1
5 100 0 100 0 100 0 100 0 100 0 100 0
2 100 0 100 0 100 0 100 0 100 0 100 0
10 100 0 100 0 60 4 100 0 90 1 80 2
2 100 0 100 0 100 0 100 0 100 0 100 0
4 100 0 75 1 75 1 75 1 75 1 100 0
9 77.78 2 100 0 77.78 2 88.89 1 77.78 2 88.89 1

Average 93.79 0.67 92.71 0.42 86.25 1.00 91.44 0.5 82.64 1.75 87.81 0.92

sub-band energy, is used to detect rhythmic behaviour in
the signal which is a repetition of same waveform over a
certain duration [6][12][13]. The third and last feature is
the coefficient of variation of amplitude which provides a
measure of how the signal amplitude is varying [12][13].

Testing is done with reconstructed data that was com-
pressed at different bit rates and flagged sections are com-
pared in order to analyze the information loss. The statistical
measures described below are similar to the ones explained
in previous studies [2] [6].

The percentage of true positives (T P) and the total number
of false positives (FP) are used in the evaluation process.
In these measures, the ground truth is chosen from the
detection output when testing the original EEG records. It
is equal to the total number of flagged sections found. The
following provides a definition of the statistical measures for
this scenario [6] [2]:

• True Positive (T P): A period of one minute or more
of overlap occurs between a flagged section in the
compressed file and a flagged section in the original
file.

• False Positive (FP): No overlap, or an overlap of less
than a minute, is found between a flagged section in
the compressed recording and flagged sections in the
original recording.

The total number of T P is divided by the total number of
flagged sections in the original file in order to compute the
percentage of the true positives.

C. Results

Table I shows the detection results of all three methods
when taking Stellate Harmonie tested on the original files
(i.e. at 16 bps) as ground truth. When looking at both the
individual patients and on the average values over all patients
(shown in the last row), we notice that there is degradation
in performance between the different methods. It can clearly
be seen that the dipole-based method gives higher percentage
of T P for most patients compared to both methods. In
addition, the dictionary-based method outperforms the 2D
SPIHT-based method. The same can be observed for the

Fig. 1: Bar plots showing the mean, maximum and minimum
values of the detection results with Stellate Harmonie tested
at 16 bps as Ground Truth and bit rate equal to 2bps.

Fig. 2: Bar plots showing the mean, maximum and minimum
values of the detection results with Stellate Harmonie tested
at 16 bps as Ground Truth and bit rate equal to 4bps.

total number of false positives. The number of FP for the
dipole-based method is lower than the one for the dictionary-
based method, which also is lower than the 2D SPIHT-based
method. This can be observed for most of the patients used
in the testing.

Figures 1 and 2 summarize the results shown in Table I
by highlighting the mean, minimum and maximum values of
T P and FP for the two bit rates and for the three different
methods. It should be noted that certain parameters have 0
minimum values, for this reason certain bars only show two
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(b) Dipole-based (o), dictionary-based (+) and 2D SPIHT-
based (*) at 4 bps.

Fig. 3: Scatter plot showing T P with the Stellate Harmonie
detections of the original files as Ground Truth with respect
to the mean PRD values of all 12 patients of MIT DB.
values, the average and the maximum.

These figures highlight the fact that the mean and the
minimum values of T P are highest for the dipole-based
method and decrease as we switch to the dictionary-based
method then to the 2D SPIHT-based method. In addition, all
methods at all bit rates have a maximum value of T P of
100%. The opposite is noticed for the false positives where
an increase occurs between these three methods. We actually
notice a big jump in FP for the 2D SPIHT-based method for
a bit rate of 4 bps.

Figure 3 shows the scatter plots of T P where the ground
truth is taken as the detections of Stellate Harmonie tested on
the original files with respect to the mean percent root mean
square difference (PRD) values of all 12 patients of MIT DB,
at bit rates 2 and 4 bps. PRD measures the distortion added
by compression. PRD of an EEG segment s[i] at index i is

equal to PRD[i] =
√

∑
N
n=1(s[i,n]−ŝ[i,n])2

∑
N
n=1 s[i,n]2

× 100 where ŝ[i,n] is

the reconstructed EEG segment at index i at sample n. Both
Figures a and b show a direct relation between distortion and
true detections for the dictionary-based and the 2D SPIHT-
based methods. For these two methods, PRD values vary a
lot and detections decrease as the values of PRD increase.
However, for the dipole-based method, at both bit rates of
2 and 4 bps, PRD values do not vary a lot and all values
of T P are high. Thus there is no apparent relationship that
links distortion and detections.

D. Discussion

In the 2D SPIHT-based method, pre-processing transforms
applied prior to coding focus more on the inter-channel re-
dundancy which is a physiological characteristic of the EEG

caused by the placement of electrodes in neighboring regions
on the scalp. However, in this method, decorrelation does not
go beyond a certain matrix. This means that this method does
not examine redundancy present between different temporal
sections of recording.

The second method takes into account a different physi-
ological characteristic of the EEG, which is the presence of
certain brain waves at certain periods of time. As mentioned
previously, these brain rhythms are an indication of the pa-
tient’s state of mind. Thus, in EEG recordings, different EEG
segments can display similar features and characteristics. In
fact, EEG segments can be grouped based on certain features
for manual classification and abnormality detection [14] [2].
In this method reference lists with dynamic update are used
to achieve this grouping.

When comparing the first two methods, an improvement is
observed in the detection results where we notice an increase
in true detections and a decrease in false positives. In fact, the
2D SPIHT-based method gives the worst results in terms of
compression distortion and seizure detection. This method is
based on 2D SPIHT coding that uses a tree-like hierarchy. In
this hierarchy, low frequency components are considered to
have higher energy than high frequency components. Thus,
when using SPIHT coding, less and less bits are allocated
to the high frequency components as bit rates decrease. This
causes more distortion in the high frequency band.

Seizures sometimes manifest an increase in amplitude and
frequency. Distortion added to the high frequency sections
causes a degradation in true detections. Thus, for this reason,
the first suggested compression method is not recommended
for recordings of patients suffering from epilepsy. This
method is not able to well preserve important diagnostic
oriented information when allocated bit rates decrease.

The second suggested method, dictionary-based method,
gives good detection results compared to the first method.
Average values of T P are almost as good as the dipole-
based method, as seen in Figures 1 and 2. This method
is able to detect seizure-like activity as shown in [2].
Thus, compression based on this method is recommended
for recordings of patients suffering with epilepsy, where
detection and compression of the data can be performed in
parallel.

As mentioned previously, the third method, i.e. dipole-
based method, is based on modelling the relationships be-
tween the different channels using dipoles and their mo-
ments. It examines and explores a deeper physiological
characteristic of the EEG compared to the other two methods,
which is the fact that the signals are generated by dipoles
located inside the skull. Thus, it provides better extraction
of the redundancy between the different channels. In ad-
dition the suggested coding techniques further decorrelate
the EEG matrices in time. This improvement in coding is
highlighted in the results shown in [5]. The third method is
able to provide both lower distortion values for high CRs
and improvement in seizure detection even at low bit rates
compared to the other two compression methods.
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IV. CONCLUSION

Results show that when exploring physiological character-
istics of EEG signals, better extraction of redundancy can be
achieved. In addition, the deeper and more meaningful the
physiological feature used, the better the compression.

The 2D SPIHT-based method uses basic decorrelation by
relying on the spatial and temporal redundancies that charac-
terize the EEG. It applies simple pre-processing techniques
and 2D transform and coder. Improvement is achieved in
the dictionary-based method where dynamic reference lists
enable us to examine and explore a more pronounced phys-
iological characteristic of the EEG, which is the presence of
brain waves. A deeper extraction of the redundancy present
between the channels is achieved in the dipole-based method,
where dipole fitting is used to model the relationship between
these channels and therefore explore a deeper physiological
characteristic of the EEG. The coders used in this method
achieve further decorrelation in 2D.

Results highlight the improvements in performance
achieved from the first suggested method, 2D SPIHT-based
method to the latest suggested method, the dipole-based
method. When the method is able to achieve better decor-
relation of the recorded signals, an improvement in post-
compression detection performance is achieved for very low
bit rates.

The dipole-based method is based on the assumption that a
single dipole is behind the generation of the observed activity
on the scalp. This gives very low distortion for event-related
potentials [5]. Improvements can be added to this method
by exploring the usage of a larger number of dipoles for
different types of EEG recordings.
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