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Abstract— With a globally aging population, the burden of
care of cognitively impaired older adults is becoming increas-
ingly concerning. Instances of Alzheimer’s disease and other
forms of dementia are becoming ever more frequent. Earlier
detection of cognitive impairment offers significant benefits, but
remains difficult to do in practice. In this paper, we develop
statistical models of the behavior of older adults within their
homes using sensor data in order to detect the early onset
of cognitive decline. Specifically, we use inhomogenous Poisson
processes to model the presence of subjects within different
rooms throughout the day in the home using unobtrusive
sensing technologies. We compare the distributions learned
from cognitively intact and impaired subjects using information
theoretic tools and observe statistical differences between the
two populations which we believe can be used to help detect
the onset of cognitive decline.

Index Terms — Mild Cognitive Impairment, Unobtrusive
Sensing Technologies, Older Population, Generalized Linear
Models, Poisson Distribution

I. INTRODUCTION

Alzheimer’s disease is the sixth leading cause of death in
North America [1]. Statistics show that one in nine Ameri-
cans, and one in eleven Canadians, aged 65 and older have
Alzheimer’s disease [2]. As the “baby boomer” generation
ages, both the proportion and number of older adults with
dementia is projected to increase dramatically, thus greatly
increasing the burden of care. Early detection of the cognitive
decline that precedes dementia is considered to be of great
significance for many reasons. For subjects with remediable
causes such as nutritional deficiencies or complications re-
sulting from taking medication, early detection of cognitive
decline can significantly increase the chances of recovery
and prevent further decline. For subjects with irreversible
conditions, early detection of cognitive decline still provides
them and their families with an opportunity to proactively
plan for their future by seeking the appropriate interventions
that can enhance their daily functioning and reduce any
emotional stress or fear [3].
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Early stage cognitive decline is challenging to detect in
the context of traditional doctor visits, as many of the
subtle clues are difficult to spot. However, recent studies
have shown that early changes in motor capabilities precede
and may be indicative of a cognitive impairment [4], and
that subjects with mild cognitive impairment exhibit a more
variable and less consistent pattern of activity throughout
the day [5]. Accordingly, and with the advancement in
technology and the proliferation of smart systems, a good
alternative to the traditional clinical paradigm is to bring
assessment into the daily activity of a person in their home
environment via unobtrusive sensors and smart systems.

Numerous smart systems have been developed to monitor
the health and well-being of older adults and support their
independence [6] [7]. However, these systems monitor the
general health of the inhabitants and are not designed to
detect cognitive changes. Other systems, such as [8], have
been designed to monitor cognitive changes using a number
of predefined measures extracted from sensors. However, this
approach has been demonstrated to generalize poorly to new
subjects and instead focuses on idiosyncratic nuances of the
individual subjects [9].

To address this main issue, in this paper we develop
statistical models of the subjects’ general activity in their
homes by modeling the distribution of their arrival times at
each room as independent inhomogenous Poisson processes.
The resulting generalized linear models provide an intuitive
statistical analysis and are hypothesized to generalize better
to unseen subjects. We develop these models using sensor
and clinical data pertaining to 68 subjects, that we received
from the ORegon Center for Aging and TECHnology (OR-
CATECH). We take an information theoretic approach and
use the kl-divergence measure to compare models pertaining
to cognitively intact and impaired subjects. Intuitively, we
postulate that there is a statistical difference in the distribu-
tion of arrival times between cognitively intact and impaired
subjects.

The rest of the paper is organized as follows: Section II
explains the data and how it was acquired. Section III de-
scribes our approach in building generalized linear models of
home activity. Section IV presents and discusses preliminary
results. Section V proposes potential future work and Section
VI concludes the paper.

II. DATA ACQUISITION & LABELING

All data acquisition was done by ORCATECH who de-
ployed sensing technologies in the homes of at least 300

978-1-4244-7929-0/14/$26.00 ©2014 IEEE 680



subjects and monitored them unobtrusively for an average
period of 3 years.

A. Participants and Data Acquisition

Participants were recruited from the Portland, Oregon,
metropolitan area. The eligibility criteria included:

1) being a man or woman aged 80 years or older;
2) living independently in a larger than one-room “studio”

apartment;
3) cognitively healthy (Clinical Dementia Rating (CDR)

score < 0.5; Mini-Mental State Examination (MMSE)
score > 24); and,

4) in average health for age (well-controlled chronic
diseases and comorbidities or none at all).

Data were acquired by installing sensing technologies
in the homes of the recruited subjects. In order to detect
movement and general activity, passive infra-red motion
sensors were installed in rooms frequently visited by the
participating subjects. Visitors and absences from the home
were tracked through wireless contact switches placed on the
exit doors of the home. All sensor firings were sent wirelessly
to a transceiver, time-stamped and recorded. For full details
on data acquisition, the reader is referred to [10].

B. Labeling of Data

Participants were assessed in-home at baseline, and during
annual in-home visits by research personnel who adminis-
tered a standardized battery of tests, including the Mini-
Mental State Examination (MMSE) and the Clinical Demen-
tia Rating (CDR). CDR served as our ground truth and was
used to determine if subjects were cognitively impaired or
intact. A score of 0 on the CDR scale indicated cognitive
intactness whereas a score of 0.5 on the CDR scale indi-
cated mild cognitive impairment (MCI). Since subjects were
assessed annually, data labeling fell into three categories:

1) cognitively intact (CIN),
2) in-flux or transitioning (IF), and
3) transitioned to mild cognitive impairment (MCI).
The labeling protocol that we implemented in assigning

labels to the data is summarized in the example depicted
by Fig. 1, which represents a subject who was monitored
for at least 3 years and was administered three annual
assessments besides baseline. The subject scored 0 on CDR

Fig. 1. Example of a subject who scored 0.5 on CDR scale on the 2nd
year assessment onward.

scale at baseline, but scored 0.5 on the 2nd and 3rd year
assessments. Therefore, the data from baseline up to the
1st year assessment were assigned the label ‘CIN’ and the
data from the 2nd year assessment onward were assigned the
label ‘MCI’. The data between the 1st year and the 2nd year
assessments were assigned the label ‘IF’. This is because the
conversion to cognitive impairment is not an instantaneous
event but a very gradual process. Accordingly, the subject’s
cognitive status would be in flux between years 1 and 2 and
would belong to neither cognitive intactness nor MCI.

III. PROBLEM SETUP

In this section, we represent variables by lower case letters,
e.g. u, vectors by bold lower case letters, e.g. uuu, and matrices
by bold upper case letters, e.g. U. Suppose that a database
consists of N subjects, each subject residing in a living unit
with n rooms, and we are interested in building statistical
models for each subject that would estimate the probability
of the subject being present in a room within a fixed time
interval throughout the day. Accordingly, the problem can
be well-modeled as a Poission process, because a Poisson
distribution models the number of occurrences of an event in
a fixed period of time. In our case, the event is being present
in a room. By defining a binary variable, y, that indicates
absence (y = 0) or presence (y = 1) in a room, the probability
of a subject arriving at a room can be given by

p(y) =
e−λ λ y

y!
(1)

where λ is the Poisson distribution parameter.
However, note that in this problem, parameter λ would

most likely vary throughout the day as the presence in each
room is highly time dependent, and therefore an inhomoge-
nous Poisson process would be a better model. To address
the inhomogeneity, we divide a day into k intervals and
define a λi for each interval where 1≤ i≤ k. Therefore, a day
represented by a matrix X would look like the following:

X = [xxx(1),xxx(2), . . . ,xxx(i), . . . ,xxx(k)], (2)

where,

xxx(i) = x j f or 1≤ j ≤ k s.t
{

x j = 1 i = j
x j = 0 i 6= j. (3)

In other words, X takes the form of an identity matrix of size
k×k, where each column represents a time interval, and each
interval is associated with a λi. Consequently, if a subject was
monitored for 900 days for example, then the subject’s input
space would consist of a total number of m = 900×k vectors.
Each vector would have a corresponding label y indicating
whether the subject was present in the room during this time
interval or not.

Accordingly, the problem becomes that of estimating the
probability of a subject being present in a room given a time
interval xxx(i) as an input. To do that, we need to find the λi’s
corresponding to each interval, which we will represent by
the vector λλλ . Accordingly, each room will be associated with
a λλλ vector. Therefore, given a data set of m time intervals
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along with the corresponding labels represented by the vector
yyy = {y(i)}m

i=1, the goal is to find λλλ that would maximize the
likelihood function L(yyy|λλλ ),

L(yyy|λλλ ) =
m

∏
i=1

e−λiλ
y(i)
i

y(i)!
. (4)

However, maximizing (4) is equivalent to maximizing its log.
Therefore,

`(λλλ ) = log(L(yyy|λλλ ))

= log
m

∏
i=1

e−λiλ
y(i)
i

y(i)!

=
m

∑
i=1

log
e−λiλ

y(i)
i

y(i)!

=
m

∑
i=1
−λi + y(i) logλi− log(y(i)!). (5)

As has been demonstrated and proven in [11], to estimate λ

originating from an inhomogenous Poisson process, λ should
be defined as a function that is monotonic, grows at least
linearly, decays exponentially, and has a derivative. λi of the
form exxx(i)

T
www meets these constraints, and consequently, the

problem of finding λλλ turns into the problem of finding the
weight vector www. Substituting this definition of λi in (5), we
get

`(www) =−
m

∑
i=1

exxx(i)
T

www +
m

∑
i=1

y(i)xxx(i)
T

www−
m

∑
i=1

log(y(i)!) (6)

But since y(i) is binary, then y(i)! is always equal to 1
which in turn means that log(y(i)!) is always equal to 0.
Accordingly, (6) becomes

`(www) =−
m

∑
i=1

exxx(i)
T

www +
m

∑
i=1

y(i)xxx(i)
T

www (7)

Maximizing (7) is equivalent to minimizing the negative of
it, i.e., minimizing

`′(www) =−`(www) =
m

∑
i=1

exxx(i)
T

www−
m

∑
i=1

y(i)xxx(i)
T

www (8)

whose derivative is given by

d`′(www)
w j

=
m

∑
i=1

x(i)j exxx(i)
T

www−
m

∑
i=1

y(i)x(i)j (9)

Once www is found, λλλ is computed as λλλ = ewww. Therefore, for
a subject residing in a living unit with 5 rooms for example,
who transitioned to MCI during the study, we would need to
approximate 15 λλλ vectors, one for each room for when the
subject is cognitively intact, when the subject’s cognition is
in flux, and when the subject is cognitively impaired.

IV. PRELIMINARY RESULTS

Of the 68 subjects, 7 were males and 61 were females.
Of the male subjects, 2 transitioned to MCI during the
monitoring period, and of the female subjects, 13 transitioned
to MCI during the monitoring period. In this section, we
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Fig. 2. a) Bedroom distribution for a subject estimated using hourly
intervals. b) Bedroom distribution for the same subject estimated using 30-
minute intervals.

report preliminary results by building generalized linear
models corresponding to four rooms: bedroom, bathroom,
kitchen, and living room since these rooms exist in all houses
and living units of any size. Accordingly, for each subject
we estimated four Poisson distributions (λλλ bdr, λλλ br, λλλ k, and
λλλ lr) for each stage of cognition (cognitive intactness, in-flux
or transitioning, and MCI). According to (1), for y = 1 the
probability is directly proportional to λ . Therefore, a high λ

is equivalent to a high probability.
Initially, we developed these models for a number of

subjects in order to determine the best k, the number of time
intervals per day. Fig. 2a) shows the bedroom distribution
for a cognitively intact subject using hourly intervals (k =
24) whereas Fig. 2b) shows the distribution using 30-minute
intervals (k = 48). As Fig. 2 shows, the distribution esti-
mated using 30-minute intervals appears smoother that the
distribution estimated using hourly intervals. Intuitively, the
shorter the interval length the smoother the distribution, but
the higher the computational cost. However, the smoothness
portrayed by Fig. 2b) was satisfactory and therefore, the rest
of the results are based on k = 48 intervals.

Fig. 3 depicts the bedroom distributions pertaining to
a subject who transitioned to MCI during the monitoring
period, where Fig. 3a) shows the distribution corresponding
to the stage of cognitive intactness, Fig. 3b) shows the dis-
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Fig. 3. a) Bedroom distribution for a subject when cognitively intact. b)
Bedroom distribution for the same subject when transitioning or in-flux. c)
Bedroom distribution for the subject when cognitively impaired.
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tribution corresponding to the stage of transitioning to MCI,
and Fig. 3c) shows the distribution corresponding to the stage
of MCI. From these distributions, we are able to visualize
how likely the subject is to be present in the bedroom
throughout the day. Furthermore, using these distributions,
and distributions pertaining to other subjects who transi-
tioned to MCI, we were able to extract important differences
among the three distributions. One main observation was the
distributions pertaining to the cognitive intactness stage were
smoother than the distributions pertaining to the transitioning
and the MCI stages. This is apparent in Fig. 3.

Another important observation was that we were able to
extract few MCI symptoms such as disturbed sleep patterns
which is clearly portrayed by the distributions in Fig. 3. Be-
cause the motion sensors utilized in this study were passive
infra-red sensors, then they would fire only when the subject
is actively present. Sleeping would not be detected by these
sensors and that explains the low probability from 11PM -
7AM when the subject was cognitively intact. However, as
the subject started transitioning to MCI, the probability of
being present in the bedroom from 11PM - 7AM increased,
and increased the most when the subject transitioned to MCI.
This increase in probability of presence was potentially due
to movements and activity related to disturbed sleep patterns
which have been proven to be associated with MCI [12].

Finally, by taking an information theoretic approach, we
computed the kl-divergence measure, which is a measure
of difference, between the cognitive intactness and the
transitioning distributions, between the cognitive intactness
and MCI distributions, and between transitioning and MCI
distributions for all subjects as depicted in Fig. 4. As shown
in Fig. 4, an increasing trend is portrayed as we move from
cognitive intactness to transitioning to MCI which implies
that when subjects are transitioning, they exhibit behaviors
and patterns closer to MCI than cognitive intactness.

V. FUTURE WORK

Based on these promising results, for future work, we
plan to further explore this approach by eliciting differences
between cognitively intact models and cognitively impaired
models using other metrics, such as entropy. Furthermore,
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Fig. 4. Distributions of kl-divergence measures between a) cognitive
intactness and transitioning distributions, b) cognitive intactness and MCI
distributions, and c) transitioning and MCI distributions.

since the clinical field is not a bastion of clarity on the
definition of MCI [13], we plan to experiment with a set of
neuropsychological assessments as our ground truth instead
of CDR and compare the results. Finally, we also plan to
explore augmenting these models with other features such
subjects’ age, gender, and the number of times a subject
visits a room instead of a binary presence or absence.

VI. CONCLUSION
In this paper we presented an alternative approach to that

of existing studies on smart systems developed to monitor
cognitive decline. Our simple approach is more generalizable
than existing approaches which tend to overfit the data from
individual subjects. We developed a statistical model of the
presence of a subject within a room as an inhomogeneous
Poisson process. We built generalized linear models for four
rooms - bedroom, bathroom, kitchen, and living room -
using data from 68 subjects, 15 of which transitioned to
MCI during the monitoring period. Most importantly, using
the learned models, were were able to observe statistical
differences between the behavior of cognitively impaired
and intact subjects that could potentially assist in the early
detection of cognitive impairment and dementia.
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