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Abstract— This paper presents a common stochastic mod-
elling framework for physiological signals which allows patient
simulation following a synthesis-by-analysis approach. Within
this framework, we propose a general model-based methodology
able to reconstruct missing or artifacted signal intervals in
cardiovascular monitoring applications. The proposed model
consists of independent stages which provide high flexibility to
incorporate signals of different nature in terms of shape, cross-
correlation and variability. The reconstruction methodology is
based on model sampling and selection based on a wide range of
boundary conditions, which include prior information. Results
on real data show how the proposed methodology fits the
particular approaches presented so far for electrocardiogram
(ECG) reconstruction and how a simple extension within the
framework can significantly improve their performance.

Index Terms—Signal reconstruction, patient simulation,
model sampling, ECG, PPG, shape model, evolution model,
ARMA, PCA.

I. INTRODUCTION

The impact of cardiovascular diseases in healthcare costs
has motivated an increasing effort in the development of
Wearable Health-Monitoring Systems (WHMS) by both the
research community and industry. Real-time monitoring of
patient’s health condition can significantly decrease these
costs by providing feedback information to either physicians
or users so that alerting events and alarms can be triggered
for health threatening awareness [1]. The accuracy of the
information provided by WHMS can be seriously compro-
mised in a connected health environment. When a patient is
monitored at point of life, missing or artifacted signal records
can easily appear due to, for instance, a misplaced sensor or
high power noise. Data misinterpretation can be avoided by
providing means of reconstructing these misleading pieces
of the signal.

Fortunately, WHMS in cardiac applications bring in an
intrinsic redundancy [2]. The commonly monitored variables
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convey mutual information due to the physiological coupling
of the mechanical and electrical functions. In fact, some
variables such as the Heart Rate are actually derived from the
Electrocardiogram (ECG) with a high degree of accuracy. In
other cases (e.g. the breathing pattern), coarse measurements
can be obtained if the specific sensor is not available [3].
These cannot replace the missing ones, but provide alterna-
tive information to be used. More subtle information such
as that conveyed by ECG segments can only be recovered
if a prior knowledge of the ECG shape is available since no
redundant information can be accounted for in this case.

A model-based synthesis-by-analysis approach can be
used for reconstruction when no redundant information is
available. Our recent contributions [4]—[7] proposed patient-
specific stochastic models of different cardiovascular signals
containing the nominal information of the behaviour of the
signal as well as their variability. Specifically, the work in [6]
proposed a stochastic model of the photoplethysmographic
(PPG) signal able to synthesise an arbitrary number of
statistically equivalent signals. The experimental evaluation
showed the model capability to track physical activity, obtain
statistics of clinical parameters by sampling, and reconstruct
missing signal epochs. Regarding the reconstruction appli-
cation, the proposal in [4] followed a similar modelling ap-
proach with the electrocardiogram (ECG) signal and showed
promising results in the reconstruction of missing intervals.
A substantial improvement based on jointly modelling PPG
and ECG signals was recently presented in [7]. In this
case, the mutual information was incorporated to the model
S0 a more accurate signal reconstruction was achieved. A
similar approach was used in [5] for the reconstruction of
the respiratory waveform using the heart rate from ECG
measurements.

The contributions in [4]-[7] show the utility of stochastic
signal modelling of cardiovascular signals for the reconstruc-
tion of missing or artifacted signal epochs. Even though
the considered signals are different in nature, the modelling
and reconstruction methodologies can be defined within a
common framework and thus be extended to incorporate
additional signals. In this paper, we present this common
framework and show how the specific proposals in [4]-[7] fit
on it. Within this framework, we show how the incorporation
of the respiratory signal into a joint model considering PPG
and ECG improves ECG reconstruction compared with the
single ECG model in [4] and the joint ECG-PPG model in
[7].

The remaining of the paper is as follows: Section II
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presents the common modelling and reconstruction method-
ology with specific examples related to our previous con-
tributions [4]-[7]. Section III presents and discusses the
reconstruction results. Finally, Section IV closes the article
with the main conclusions extracted from this work.

II. METHODS
A. Model Description

The proposed model is based on the evolution of a
set of parameters extracted from each heartbeat. Since all
cardiovascular signals present a quasi-periodical behaviour
due to the mechanics of the heart, it seems reasonable to
undertake the modelling process on a heartbeat basis. A
schematic of the pipeline the acquired signals undergo is
presented in Figure 1. Three main stages can be identified.
Specific details for each stage are provided in the following
paragraphs.

1) Preprocessing: Let us consider a multichannel signal
x(t) = [x1(¢), 22(t), ..., 2k (t)]" where each channel corre-
sponds to a different sensor in the WHMS. For the specific
application we deal with in the experimental section we
have K = 3, with x1(t) = zpcc(t), v2(t) = zppc(t), and
x3(t) = xresp(t). The preprocessing stage involves a number
of signal conditioning steps including (but not limited to):

« Decimation or interpolation of the signals so a common
convenient sampling frequency is achieved.

o Noise filtering and detrending (e.g., baseline wandering
removal in ECG).

o Heartbeat delineation.

o Time delineation of meaningful intervals when appro-
priate (e.g. P, Q, R, S and T waves in the ECG).

For specific details on how these steps have been performed,
the reader is referred to [3]-[7]. The output of this stage is a
collection of N beats {x, (t)})_, which will directly enter
the next stage.

2) Shape Modelling: The output of this stage is a
parametrization of each heartbeat so that:

xp(t) = T(W(n],t) +r(t), t €T (1)

where T'(-,t) = [T'1(-,t),Ta(-,t),..., T (-, t)]" is a set of
parametric curves, W[n] = [Wy[n], Wan],..., WgIn]]"
is the vector of parameters for the n-th beat whose evo-
lution is modelled in the next stage, r(t) is the residue
(neglected hereinafter), and 7 is the domain in which x,,
is defined. Details for the different curves I'y(-,¢) and their
parametrizations Wy[n] are summarized in table I for the
different signals in [4]-[7].

3) Time Evolution: The flexibility of the proposed
methodology that allows considering both single- and mul-
tichannel models under a common framework relies on this
evolution stage. The strategy we follow allows to separately
model the evolution of each component of the parameter
vector by first decorrelating the signals. To this end, we
start from the parameter vector Wn| and transform it using
Principal Component Analysis (PCA) [9] so a new parameter
vector Y[n] = H - W{n] is obtained. The PCA matrix H

TABLE I

SHAPE MODELLING INDICATIONS FOR CARDIOVASCULAR SIGNALS IN

[41-[71.

Signal [ Tu(,t) [ Win]
ECG [4], Piecewise Hermite’s interpola- ¢}, labels (see inset in Fig. I).
[7] tion [8] over the meaningful pa-
rameters corresponding to the
time and amplitude labels re-
sulting from ECG delineation
—onset, peak and end of all the
waves (P, Q, R, S and T), plus
center of each wave— (see [4]
for more details on their obten-
tion).
PPG [4], Mixture of two Gaussians plus | Timings onset-maxima and
[6] a linear trend warped so that | maxima-end (¢£; and to).
the timings onset-maximum and Parameters of the linear
maximum-end are always their
mean values. (—b1)2 trend  (mo and my), and
v(t) = ajexp [*T] the mixture of Gaussians
1 al,bl,cl,ag,bg and Cc2
+  agexp [,%] parameters define two gaussian
°2 curves. All these parameters
mo +myt can be seen in Fig. 1 as in [4],
[6].
Respiratory | Constant value Actual value of the signal.
and Heart
Rate [5]

is estimated over the whole Wn| vector time series since
we have observed that the structure of the covariance matrix
is approximately constant in time. After that, the evolution
of each component can be independently modelled. Thus,
the temporal evolution can be specifically defined for each
of the parameters which makes the methodology flexible.
Our approach so far has been using the same model for each
component of Y, with good results. Depending on the nature
of the signal, a stationary evolution can be considered as in
[5] or specific trends may be taken into account as in [4],
[6], [7]. Specifically:

o The Y} signals for the Heart Rate and Respiratory
signal in [5] are directly modelled using 4th-order
Autoregressive processes (AR(4)).

o The Y vectors corresponding to ECG and PPG signals
are modelled in [4], [6], [7] by first splitting each com-
ponent Y, into a trend and a residue and modelling
each of them as an Autoregressive Moving Average
(ARMA(2,2)) process. A schematic of this process
including the decorrelation is presented in Figure 1
(inset). In order to extract the trend, a 30 samples
moving average window was used —hjsa(s0)[n]- as

follows:
Yijrlnl = Yijn] x haragon]  (Trend),  (2)
Yijrln] = Yij[n] = Yiir[n]  (Residue), (3)

We will follow this approach to reconstruct the ECG
signal from both the PPG and respiratory signal. So,
we will incorporate the respiratory signal to the joint
model by sampling it synchronously with the ECG at
R-peak time stamps.

B. Signal Reconstruction from Model Sampling

The reconstruction process consists on a synthesis-by-
analysis approach which generates a number of candidate
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Fig. 1.

samples of the artifacted or missing epoch followed by a
selection based on boundary conditions. These boundary
conditions are also used to perform a refinement of the
synthesized signal in joint models. The following stages can
be identified:

1) Analysis of the model: The parameters of the model
are estimated according to the diagram in Fig. 1 using the
best (longest) available piece of the signal(s).

2) Signal synthesis by model sampling: A number of
samples of the model are generated so that the number
of total heartbeats exceeds the length of the epoch to be
reconstructed. To this end, the temporal evolution is first
simulated and correlated using the PCA matrix. Once the
parameter vector is available, each heartbeat is obtained from
(D.

3) Selection of the optimal sample: The optimal sample
is selected based on minimizing a cost function which
compares the simulated signal with a boundary condition.
The reference signals are composed of one or more pieces
of the available original signals . The cost function may
incorporate temporal and amplitude errors between both
signals (given by the parameter vector itself) as well as
statistical similarity among the covariance matrices of the
parameter vector. Specifically, for the works in [4], [7] and
the proposal here presented:

o Temporal errors are accounted for by averaging the error
between the positions of the maximum signal values for
each heartbeat.

o Amplitude errors are obtained by time-averaging the
point-to-point errors between the simulated signal and
the boundary conditions.

o Statistical similarity is computed in terms of the
William’s Index [10] using the covariance matrices of
the simulated data and the reference as raters and the
inverse of the absolute mean error (element by element)
between raters as the agreement magnitude.

The boundary conditions are picked up in a way that a
few beats before and after the epoch to be reconstructed are
selected together with the actual epoch if other signals are
available (i.e., in joint models, see [7]).

4) Refinement of the solution: The simulation process
involves the whole parameter vector even though some of
the parameters might be available. If this is the case, the

General pipeline for the proposed modelling framework.

simulated parameters are replaced by the actual ones. Since
this process will modify the covariance structure of the data,
an iterative procedure is carried out over the new parameter
vector to force the right correlation:

YOPt [77,} = H Wopt [Tl] 4)
Yope[n] < GS{Yop[n]} @)
Wopt [n} — HT' Yopt [n]v (6)

where H is the PCA matrix, and GS{-} denotes Gram-
Schmidt orthogonalization over a vector series. The process
is repeated until stationary convergence of the algorithm is
achieved. This refinement allows including prior information
in the reconstruction process thus reducing the uncertainty
of the model. For instance, in [7], the PPG signal is available
to reconstruct a missing ECG artifact. Since the position of
the R wave can be accurately obtained from this PPG signal,
the uncertainty of this parameter is removed by including it
in the refinement stage.

III. RESULTS AND DISCUSSION

To illustrate the flexibility and performance of the pro-
posed framework, we have manually removed different
length segments from a 5 min ECG registry (V5 derivation)
and reconstructed them using: 1) A single model of the
ECG signal as in [4], 2) a joint ECG-PPG model as in [7],
3) a new extended joint model of the ECG, PPG and the
respiratory signal. The data were obtained from a 25 years
old healthy patient and were sampled at 200 Hz (ECG) and
66.67 Hz (PPG and respiratory wave), and synchronized and
interpolated at 250 Hz for delineation.

Figure 2 shows the reconstruction results for a 20 heart-
beats epoch. The original and reconstructed pieces as well
as the point-to-point absolute error between the reconstructed
and removed pieces are presented for the three models. The
errors are also shown in Fig. 3 using box plot diagrams.
It is worth noting that the stochastic nature of the model
guarantees statistic convergence but this is not the case for
point-to-point convergence. However, the flexibility of the
model to incorporate boundary conditions yields accurate
results in terms of point-to-point convergence, specially for
joint models. The spiky nature of the error in the single ECG
model reveals a variability in the position of the R peak.
This variability does not affect the joint models (proposal

678



Single ECG model

Joint ECG-PPG model

Joint ECG-PPG-respiratory model

—— Original

—— Original
—— Reconstructed

—— Original

0

bt ol JL dbhdis b
2 4 6 i(s) 10 12 14 16

Fig. 2. Reconstruction results obtained using a single model of the ECG (left, as in [4]), a joint ECG-PPG model (top, as in [7]), and the new extended

joint ECG-PPG-respiratory model (right).

here evaluated and method in [6]), since the methodology
allows using the PPG signal to incorporate the actual R-peak
position. In addition, the contribution of the respiratory signal
to the extension here proposed improves the reconstruction
results.
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Fig. 3. Boxplots of the absolute error (point-to-point) between the
reconstructed and removed pieces: 1) single model of the ECG (as in [4]), 2)
a joint ECG-PPG model ( as in [7]), 3) joint ECG-PPG-respiratory model.

These results show that the addition of a simple pa-
rameter can significantly improve the performance of the
reconstruction method. The proposed common framework
makes this extension of the model straightforward and paves
the way to application-specific model definitions that can
be conveniently tailored to improve the overall performance.
For instance, if the accuracy of the reconstruction of the QRS
intervals needs to be prioritised, the model can be defined to
include additional signals conveying this information (e.g.,
additional ECG leads).

The PCA matrix H conveys all the mutual information
among the different parameters, including cross-channel in-
formation when multiple signals are jointly modelled. Since
this matrix can be of rather large size, it is important that
the number of parameters to be included in the model is
kept to the minimum that allows obtaining an acceptable
performance for a specific application. This way, an accurate
estimation of the correlation matrix can be obtained from
the available samples avoiding undesirable errors in the
reconstruction process.

IV. CONCLUSION

We have proposed a general stochastic modelling frame-
work for the reconstruction of missing or artifacted signal
periods in cardiac monitoring applications. The proposed
framework is not only suited to cardiovascular signals but
to other sort of signals either physiological or not. Thus,
the scope of the reconstruction methodology also covers any
domain in which continuous monitoring of time series is
needed. Our current research is focused on extending the
applicability of the modelling framework to simulate patient
behavior under different conditions.
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