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Abstract— Common Spatial Pattern (CSP) methods are widely used
to extract the brain activity for brain machine interfacing (BMI) based
on electroencephalogram (EEG). For each mental task, CSP methods
estimate a covariance matrix of EEG signals and adopt the uniform
average of the sample covariance matrices over trials. However, the
uniform average is sensitive to outliers caused by e.g. unrelated brain
activity. In this paper, we propose an improvement of the estimated
covariance matrix utilized in CSP methods by reducing the influence
of the outliers as well as guaranteeing positive definiteness. More
precisely, our estimation is the projection of the uniform average onto
the intersection of two convex sets: the first set is a special reduced
dimensional subspace which alleviates the influence of the outliers; the
second is the positive definite cone. A numerical experiment supports
the effectiveness of the proposed technique.

I. INTRODUCTION

Brain machine interfacing (BMI) is a challenging application of
signal processing, machine learning, and neuroscience [1]. BMIs
capture brain activities associated with mental tasks and external
stimuli and realize non-muscular communication and a control
channel for conveying messages and commands to the external
world [1]–[3], by using recordings of brain activities such as
noninvasive electroencephalogram (EEG), which is the recordings
of the electrical activity of neurons on the scalp level [4]. In
particular, a noninvasive BMI associated with motor-imagery (MI-
BMI) [5], [6] is a crucial field because it realizes to assist that people
who have severe motor disabilities control complex movements
and to offer a new useful application in medical rehabilitation for
paralyzed stroke patients [7]. It is known that motor-imagery tasks
evoke the so-called mu rhythm [2], [3]. Hence, in the presence
of measurement noise and unrelated brain activities, accurately
catching such a brain activity has of great importance for realization
of MI-BMI.

A well known approach to capture the brain activity for MI-
BMI is so-called Common Spatial Pattern (CSP) methods (see
also Fig. 1 for the entire flowchart) [8]–[15]. The CSP is a set
of spatial weight coefficients corresponding to each electrode in
a multichannel EEG. These coefficients are determined in such a
way that the variances of the signal extracted by the spatial weights
differ between two tasks as much as possible. For maximizing the
differences of the exact variances of extracted signals, CSP methods
estimate a pair of the true covariance matrices of two different
tasks by uniformly averaging the sample covariance matrices of
EEG signals observed several times (called trial). However, the
uniform average is relatively sensitive to outliers caused by e.g.
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Fig. 1. Flowchart of motor-imagery BMI from data acquisition to
classification.

measurement noise and the unrelated brain activity, which may
deteriorate classification performance [16].1

In this paper, we propose a novel covariance matrix estimation to
alleviate the sensitivity, for betterment on classification performance
of CSP methods.2 The key idea of our estimation is to reduce the
influence of the outliers as well as to guarantee an inherent property
of covariance matrices, i.e., positive definiteness of the estimate.
More precisely, to alleviate the influence, we focus on a natural
observation: for the same mental task, the sample covariance ma-
trices obtained at every trial have similarity except for the outliers;
that is, most sample covariance matrices can be approximated well
by a linear combination of a few “main” matrices, or there exists
a reduced dimensional subspace that can approximate most sample
covariance matrices except for the outliers; Hence adopting the
subspace as search region of our estimation reduces the influence
of the outliers. To specify the subspace, we utilize the singular
value decomposition (SVD) of a matrix consisting of the (column)
vectorizations of the sample covariance matrices. In addition, to
guarantee the positive definiteness, we also utilize the convex cone
of positive definite matrices [18], [19]. Consequently, following
the minimal disturbance principle, we adopt as our estimation the
projection onto the intersection of the reduced dimensional subspace
and the cone. To compute the projection, the Dykstra’s algorithm
(e.g. [20], [21]) is utilized. A numerical experiment demonstrates
the effectiveness of the proposed technique.

II. PRELIMINARIES

Let R denotes the set of all real numbers. For a given positive
integer M , We define a real Hilbert Space H as the space of all
M ×M real symmetric matrices, i.e. H := {X ∈ RM×M | X =
X>}. Here, the inner product is defined by 〈X,Y 〉 = tr(X>Y ),
(X,Y ∈ H), and tr(A) :=

∑M
i=1 ai,i stands for the trace of

the matrix A := [ai,j ] ∈ RM×M . The induced norm ‖X‖F :=√
〈X,X〉, (X ∈ H), becomes the Frobenius norm. A matrix A ∈

RM×M is called positive (semi) definite if v>Av(>) > 0 for all

1Instead of the uniform average, a weighted average of sample covariance
matrices at every trial was examined in [17].

2The proposed estimation technique can be applied to the variants of the
CSP method and has potential to improve their performance. However, we
show for simplicity the effectiveness of the proposed technique by utilizing
the standard CSP method [8], [9] in this paper.
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nonzero v ∈ RM , where ·> denotes transposition. Additionally,
given the matrices B,C ∈ RM×M , the notation B(<) � C is
equivalent to that B −C is positive (semi) definite.

A set C ⊂ H is called convex if ∀X,Y ∈ C and λ ∈ (0, 1),
λX+(1−λ)Y ∈ C. Given a closed convex set C ⊂ H, the metric
projection onto C is the mapping PC : H → C : X 7→ PC(X) s.t.
d(X, C) := min{‖X − Y ‖F | Y ∈ C} = ‖X − PC(X)‖F .

A. Common Spatial Pattern (CSP)

We briefly review the standard CSP method [8], [9]. The CSP
is given as a spatial weight vector, w ∈ RM , which attempts to
maximize the in-class variance for a self task (class). Consider
a desired case that we have exact knowledge on the covariance
matrices Sd ∈ H (d ∈ {+,−}) in the two classes (e.g., imagination
of left and right hand movements), where + and − indicate the class
labels. Then for a class d, the CSP is obtained as a minimizer of
the following problem:

max
w

w>Sdw,

subject to w>(S+ + S−)w = 1.
(1)

The solution of (1) is given by the generalized eigenvector corre-
sponding to the largest generalized eigenvalue:

Sdw = λ(S+ + S−)w. (2)

In practice, to estimate the covariance matrices of two classes,
the uniform average of multiple measurements of EEG signals is
adopted, i.e.,

Sd =
1

Kd

∑
k∈Cd

S(k), d ∈ {+,−}, (3)

where Cd is the indices of training data containing the signals
observed at all trials belonging to class d, Kd is the cardinality
of Cd, and S(k) is the sample covariance matrix at the kth trial
defined by

S(k) :=
1

N
X(k)X(k)> ∈ RM×M , (4)

where X(k) ∈ RM×N is a matrix consisting of zero mean M
channel signals with N samples at the kth trial.3 In general, each
channel signal in X(k) passed through a bandpass filter which
passes the frequency components related to the target brain activity.

B. Dykstra’s Algorithm

The Dykstra’s algorithm computes the projection onto the inter-
section of two convex sets.4 Let C1 and C2 be closed convex sets
of H such that C1 ∩ C2 6= φ, and for an arbitrary initial X0 ∈ H,
generate sequences Xn,Yn ∈ H as follows:

p0 = q0 = 0

Yn = PC1(Xn + pn)

pn+1 = Xn + pn − Yn

Xn+1 = PC2(Yn + qn)

qn+1 = Yn + qn −Xn+1.

(5)

Then, {Xn}∞n=0 and {Yn}∞n=0 converge to PC1∩C2(X0).

III. REDUCED RANK ESTIMATION OF COVARIANCE MATRICES

Consider an estimation of a covariance matrix Sd by using
sample covariance matrices S(k), k ∈ Cd, for one of the classes

3The sample mean is subtracted from the observed data if necessary (the
M channel signals have nonzero mean).

4Although the Dykstra’s algorithm can compute the projection onto the
intersection of finitely many convex sets, its special form is shown here for
simplicity.

Fig. 2. Illustration of the proposed technique. Since the subspace CR
well approximates a group of sample covariance matrices S(k), the metric
projection onto the intersection of CR and CP results in a reasonable
covariance estimate S?

d from the unstable covariance estimate Sd utilized
in the standard CSP method.

(the same procedure will be applied for each class). We improve the
covariance matrix estimation utilized in the CSP method, i.e., Sd

in (3), by projecting the intersection of the two closed convex sets:
The first set CR is a subspace utilized to alleviate the influence of
the outliers, the second CP is a cone of positive definite matrices.
The resulting matrix S?

d is adopted as a new estimate (see Fig. 2).
The designs of the convex sets are the following: First, to alleviate

the influence of the outliers, we adopt a specially designed reduced
dimensional subspace of RM2

(≡ RM×M ). Assume that the sample
covariance matrices S(k) are similar except for the outliers, and the
outliers are not dominant. Then we can expect that there exists a
subspace that approximates well many similar sample covariance
matrices and does poorly the outliers. Hence finding the estimate of
the covariance matrix Sd from such a subspace would reduce the
influence of outliers. We embody this idea by the Singular Value
Decomposition (SVD) of the following matrix5;

Z=
[
vec(S(1)), vec(S(2)), . . . , vec(S(Kd))

]
∈RM2×Kd, (6)

where vec(·) denotes the vectorization operator. We denote SVD
of Z as

Z = UZΣZV >Z , (7)

where the orthonormal matrices UZ := [u1, . . . ,uM2 ] ∈
RM2×M2

and VZ := [v1, . . . ,vKd ] ∈ RKd×Kd consist of the left
and right singular vectors, and the diagonal matrix ΣZ ∈ RM2×Kd

contains the singular values {σi(Z)}rmax
i=1 on its main diagonal

in decreasing order and 0’s elsewhere (rmax := min{M2,Kd}).
Then, except for outliers, sample covariance matrices can be
approximated well by the subspace spanned by the left singular
vectors associated with large singular values. Hence the true co-
variance matrix Sd is expected to be near

CR := {S ∈ H | vec(S) ∈ R(Ur
Z)}, (8)

where r (≤ rmax) is the number of remaining singular values,

Ur
Z = [u1,u2, . . . ,ur] ∈ RM2×r,

R(Ur
Z) :={Ur

Zkr ∈ RM2

| ∀kr ∈ Rr}.

5If Z has column vectors with extremely large norm, they should be
normalized before applying SVD.
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Algorithm 1 solver for optimization problem (10)

Given S(k)(k = 1, . . . ,Kd).
Choose number r of remaining singular values.
Set S0 = Sd = 1

Kd

∑Kd
k=1 S

(k) (see also (3)), p0 = 0, q0 = 0,
and Q = εIM .
Z = [vec(S(1)), vec(S(2)), . . . , vec(S(Kd))].
Ur

Z = r leading left singular vectors of Z.
repeat

1. S̃n = vec−1
[
Ur

ZUr>
Z vec(Sn + pn)

]
.

2. pn+1 = Sn + pn − S̃n.
3. Compute an eigendecomposition

US̃n+qn−QΛU>
S̃n+qn−Q

of S̃n + qn −Q.
4. Construct Λ by replacing the negative entries in Λ

by zeros.
5. Sn+1 = US̃n+qn−QΛU>

S̃n+qn−Q
+Q.

6. qn+1 = S̃n + qn − Sn+1.
until converged.

Next, to guarantee the positive definiteness of the resulting matrix,
we adopt a positive definite cone

CP = {S ∈ H | S < Q}, (9)

where Q ∈ H is a positive definite matrix. A typical choice is
Q := εIM , with a predefined parameter ε > 0 and the identity
matrix IM ∈ H.

Consequently, our estimation of the covariance matrix is

S?
d = PCR∩CP

(
Sd

)
= arg min

S∈CR∩CP

1

2

∥∥S − Sd

∥∥2
F
, (10)

where Sd = 1
Kd

∑Kd
k=1 S

(k). To solve the optimization problem in
(10), we adopt the Dykstra’s algorithm (5) with C1 := CR, C2 :=
CP , and X0 := Sd. The detailed algorithm is shown in Algorithm
1.
Remark 1 (Computation of Projections): The metric projection
PCR : H → CR is given by

PCR(S) = vec−1
[
Ur

ZUr>
Z vec(S)

]
. (11)

The metric projection PCP : H → CP is given by

PCP (S) = US−QΛU>S−Q +Q, (12)

where US−QΛU>S−Q is the eigendecomposition of S − Q, i.e.
US−Q is the M ×M orthonormal matrix whose columns are the
eigenvectors of the matrix S − Q as well as Λ is the diagonal
matrix consisting of the eigenvalues of S −Q, and the matrix Λ
is formed by replacing the negative entries in Λ by zeros.
Remark 2 (Selection of Criterion): Although we adopt for simplic-
ity the Frobenius norm to measure dissimilarity of two covariance
matrices in (10), employing other convex criteria has potential to
improve further. For example, in consideration of symmetricity of
covariance matrices, one of natural choice is a weighted Frobenius
norm such as

1

2

∥∥Θ� (S − Sd)
∥∥2
F
,

where Θ := [θi,j ] ∈ RM×M is defined by

θi,j =

{
1 (j ≥ i)
0 (j < i)

,

TABLE I
DATA DESCRIPTION OF DATA SET IVA AND DATA SET 1.

data set IVa data set 1
subject labels aa,al,av,aw,ay a,b,f,g

the number of channels 118 59
signal length (sec) 3.5 4.0
sampling rate (Hz) 1000 100

the number of trials per class 140 100

and � implies the Hadamard product (or entry-wise product). In
addition, a convex relaxation of the geodesic distance between two
symmetric positive definite matrices (e.g. [22]) is also a strong
candidate.

IV. EXPERIMENT OF TWO EEG CLASSIFICATION

We conduct an experiment of binary classification of EEG signal
during motor imagery, to confirm effectiveness of the proposed
covariance matrix estimation. Although the proposed technique can
be utilized in most of CSP methods, we apply it to the standard
CSP method [8], [9] for showing its fundamental property.

In this experiment, we used two datasets. The first is dataset
IVa from BCI competition III, which was provided by Fraunhofer
FIRST (Intelligent Data Analysis Group) and Campus Benjamin
Franklin of the Charité - University Medicine Berlin (Department
of Neurology, Neurophysics Group) [23]. This dataset consists of
EEG signals during right hand and right foot motor-imageries. In
this experiment, we furthermore applied to those data a bandpass
filter whose passband is 7–30 Hz and downsampled to 100 Hz. The
second is dataset 1 from BCI competition IV, which was provided
by Berlin Institute of Technology (Machine Learning Laboratory),
Fraunhofer FIRST (Intelligent Data Analysis Group) and Campus
Benjamin Franklin of the Charité - University Medicine Berlin
(Department of Neurology, Neurophysics Group) [24]. This dataset
consists of two motor-imageries, which were selected from the three
classes left hand, right hand, and foot (side chosen by the subject;
optionally also both feet). In this experiment, we furthermore
applied to those data a bandpass filter whose passband is 7–30 Hz.
A detailed description of two datasets is shown in Table I.

A. Classification Algorithm

We defined the feature vector as the output of feature extraction
using the CSP (and with the proposed covariance matrix estima-
tion). Although the solution of (1) is given by the eigenvector
corresponding to the smallest eigenvalue in (2), other eigenvectors
can be utilized for improving classification accuracy [25]. Following
this strategy, we defined the feature vector y by

y = [y1, . . . , yl, yM−l+1, . . . , yM ]> ∈ R2l,

yi =
1

N

∥∥∥ŵ>i X
∥∥∥2
2
, i ∈ {1, . . . , l,M−l+1, . . . ,M}

(13)

with the first l and the last l eigenvectors, for classification of
unlabeled data X , where ŵi is the eigenvector corresponding to
the ith smallest eigenvalue of (2) (i = 1, 2, . . . ,M ).

In this experiment, we adopted the linear discriminant analysis
(LDA) [26] with the feature vector y as its input. In all cases, for
the sake of simplicity of comparison, the number l of the associated
spatial weights in (13) is fixed to 3.

B. Result

Table II shows results of the experiment of the standard CSP
method with two covariance estimations: the uniform average (3)
or the proposed technique (10). The results were obtained by
conducting 5-fold cross validation. For all the subjects, our tech-
nique improves the resulting classification accuracy, which clearly
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TABLE II
CLASSIFICATION ACCURACY [%] GIVEN BY 5-FOLD CROSS VALIDATION. IN PROPOSED 1 (THE STANDARD CSP WITH THE PROPOSED TECHNIQUE),

WE SHOW THE HIGHEST CLASSIFICATION ACCURACY AT EACH SUBJECT AMONG ALL POSSIBLE PAIR (r+, r−), WHICH IS A PAIR OF THE NUMBER OF

REMAINING SINGULAR VALUES IN CLASS + AND IN CLASS −, IN PROPOSED 2, WE ALSO SHOW THE HIGHEST ACCURACY AMONG EVERY (r+, r−)
SUCH THAT r+ = r− . DUE TO 5 FOLD CROSS VALIDATION, IN DATA SET IVA, r+ AND r− ARE BOUNDED ABOVE BY rmax(= min{M2,Kd}) = 112

BECAUSE OF M = 118 CHANNEL SIGNALS AND Kd = 112 TRIALS IN EACH CLASS. SIMILARLY, FOR DATA SET 1, WE HAVE rmax = 80 BY

(M,Kd) = (59, 80). NOTE THAT IN ALL THE METHODS THE NUMBER OF THE ASSOCIATED SPATIAL WEIGHTS, 2l IN (13), IS FIXED TO 6.

Method subjects (data set IVa) subjects (data set 1)
aa al av aw ay Ave. a b f g Ave.

CSP 75.71 93.57 63.21 97.86 92.86 84.64 66.00 71.50 88.50 89.00 78.75
Proposed 1 80.71 95.00 71.07 98.57 94.29 87.93 81.00 78.50 90.00 91.00 85.13
(r+, r−) (5, 47) (55, 5) (2, 101) (103,26) (112, 20) (25, 3) (5, 43) (73, 39) (30, 80)

Proposed 2 79.29 93.57 69.29 98.21 93.21 86.71 78.50 76.50 89.00 90.00 83.50
(r+ = r−) (5) (23) (9) (58) (25) (5) (3) (71) (32)

demonstrates the effectiveness of the proposed technique. Finally,
note that computational cost for Algorithm 1 is significantly low
in this experiment because it takes only one iteration to reach the
solution S?

d of (10) for every number of remaining singular values.

V. CONCLUDING REMARKS

In this paper, we have proposed an improvement of the covariance
matrix estimation utilized in CSP methods. The underlying idea is
to alleviate the influence of the outliers as well as to guarantee
the inherent property of covariance matrices, enjoying the virtue
of the conventional methods. This idea has been embodied as
the projection onto the intersection of two convex sets: A special
reduced dimensional subspace that can reduce the influence of the
outliers; the positive definite matrix cone. Numerical experiments
have shown that the proposed method achieves improved classifica-
tion accuracy with a low additional computational cost. Future work
includes (i) extensions of the proposed technique for variants of the
CSP method (e.g. [10]–[15]), (ii) systematic choices of the number
of remaining singular values, e.g., by extending a technique utilized
in context of image processing [27], (iii) sophisticated designs of
dissimilarity criterion of two covariance matrices, and (iv) further
performance improvements of the proposed technique by combining
the result in [17], i.e., the use of a weighted average, instead of the
uniform average utilized in the CSP method, of sample covariance
matrices.
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