
  

  

Abstract – The selection of optimal features has long been a 
subject of debate for pattern recognition based myoelectric 
control. Studies have compared many features, but have 
typically used small or constrained data sets. Herein, the 
performance of various features is evaluated using data from 
six previously reported data sets. The number of channels, 
the contraction dynamics (dynamic vs static), and classifier 
type all yielded significant interactions (p<0.05) with the 
feature set. When using 8 channels, the addition of the tested 
features produced no improvement over a standard time 
domain (TD) feature set alone (p>0.05). When using fewer 
channels, however, autoregressive, Cepstral coefficients, 
Willison amplitude and sample entropy features all provided 
significant improvement during dynamic contractions 
(p<0.05). The simple Willison amplitude is highlighted, 
showing that it can provide significant improvement when 
used as a replacement for any one of the standard TD 
features. 

I. INTRODUCTION 
 attern recognition based myoelectric control has been a 
greatly researched subject, particularly over the last 

decade. Substantial effort has been invested to advance the 
state of the art and produce a control system that is 
sufficiently robust for clinical and commercial use. Recent 
findings have suggested that the traditional design of these 
systems using constrained experiments translates poorly to 
clinical performance [1]. Several groups have identified 
deficiencies that arise when testing statically trained systems 
with perturbations such electrode shift [2], muscle fatigue 
[3], residual limb position [4] [5], and varying contraction 
intensity [6] [7]. While in each case dynamic training 
approaches were able to mitigate these effects, it is clear that 
isolated testing of algorithmic advances does not provide a 
complete picture. 
 The literature has shown that the proper selection of 
representative features is of particular importance [8] [9]. 
Several groups have published detailed comparisons of the 
various feature extraction methods routinely employed in 
myoelectric pattern recognition.  Oskei et al. [9] reviewed 
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several time domain (TD), frequency domain (FD) and time-
frequency features. In 2009, Phinyomark et al. [10] 
compared the noise robustness of several EMG features, 
although only 3 subjects were tested and the noise was 
simulated using additive white Gaussian noise. More 
recently, Phinyomark et al. [11] evaluated 50 different 
features of the electromyogram (EMG).  They concluded 
that, over a period of 21 days, sample entropy was the best 
single EMG feature. These results, however, were obtained 
from a single able-bodied subject (previously reported by 
Kaufmann et al. [12]), and included only static, steady-state 
contractions.  

In 2010, Tkach et al. [13] examined the stability of 
various features in the presence of electrode shift, induced 
muscle fatigue, and change in contraction effort/intensity.  
They used two grids of twelve monopolar electrodes placed 
over the biceps and triceps to classify four static 
contractions; elbow flex/extension and wrist pro/supination. 
Their results suggested that a pairing of time (mean absolute 
value and wavelength) and frequency (autoregressive and 
Cepstral coefficients) domain features produced the most 
robust performance. No consistent favorite was determined, 
however, and it is unclear how these results might translate 
to the musculature of the forearm for use by transradial 
amputees. 

Despite their having been a number of studies comparing 
the suitability of features for EMG pattern recognition [1], 
no clear consensus appears to have been reached. 
Furthermore, little emphasis has been placed on the 
complexity of feature calculations or the robustness of 
features in varying measurement conditions. The most 
commonly referenced set of features remains the set of time-
domain (TD) features first introduced by Hudgins et al. [14]. 
Herein, we use data from six previously reported data sets to 
evaluate the performance of a selection of promising 
features with varying numbers of channels and contraction 
dynamics.  

II. METHODOLOGY 
Data from six previously reported pattern recognition 

based myoelectric control data sets were used. All data used 
were collected from able bodied subjects to ease cross study 
comparisons, and represent over 60 separate data collection 
sessions (some subjects may have participated in more than 
one study). From each dataset, 7 classes of motion were 
extracted: wrist flexion & extension, wrist pronation & 
supination, hand open & close and no motion. All data were 
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recorded using bipolar pairs of electrodes, placed 
equidistantly around the circumference of the dominant 
forearm at the area of largest muscle bulk (approximately 
one third the length of the forearm, proximal to the elbow).  

Table I briefly summarizes the datasets. The term static or 
dynamic in the final column refers to the use of constant or 
variable intensity contractions during training and testing. 
The static data sets used subjectively governed constant, 
medium intensity contractions for training and testing. The 
dynamic data sets employed a ramp approach, where users 
subjectively increased from rest to a moderate intensity 
contraction during both training and testing. For further 
details, please refer to the original studies, as referenced in 
Table I. 

Results were calculated for each trial of each study using 
an n-fold cross validation process, training with n-1 
repetitions and testing with the nth

 one iteratively until each 
repetition is tested. Results were calculated for the each of 
the Hudgins’ time domain features [14]; slope sign changes, 
zero crossings, mean absolute value and wavelength, as well 
as autoregressive (AR, 6th order) [15], cepstral coefficients 
(CC) [16], Willison amplitude (WAMP) [17] and sample 
entropy (ENT) [18].  Results were computed using both a 
linear discriminant classifier (LDA) and a multiclass support 
vector machine with linear kernel (SVM), and repeated for 
combinations of 4, 6 and 8 channels. 

  

Fig. 1 shows the approximate electrode locations on a 
cross-sectional image of the forearm.  The six channel set 
comprised the set of {2 3 4 6 7 8}, while the four channel set 
used channels {2 4 6 8}. 

Statistical analysis of the results was conducted using a 
within factors repeated measures analysis of variance with a 
significance level of 95%. Post-hoc comparisons were 
completed using the Tukey-Kramer test. 

 

 
Figure 2 - Mean LDA classification error (%) of the individual 

features along with the TD feature set for the static (a) and 
dynamic (b) data sets.  Note that the * symbol denotes a 

significant improvement (p<0.05) over each of the SC, ZC, 
MAV, WL, AR & CC features.  The + and x symbols denote a 

significant improvement (p<0.05) over the WAMP, and ENT 
features, respectively. 
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Figure 1 - Cross-sectional view of the forearm with 

approximate electrode locations. 
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Table 1 - A description of the datasets used in this work. The “static or dynamic” column refers to the use of constant or 
variable intensity contractions during training. 

 

DATA 
SET DESCRIPTION # OF 

SUBJECTS 
MAX # OF 
CHANNELS 

STATIC OR 
DYNAMIC 

D1 Confidence Based Rejection for Improved Pattern Recognition [19] 10 6 Dynamic 

D2 Selective Ensemble-Based Classification [20] 10 6 Dynamic 

D3 Principal Components Analysis for Pattern Recognition [21] 10 8 Static 

D4 Effect of Limb Position on Pattern Recognition [4] 12 8 Static 

D5 Effect of Proportional Control on Pattern Recognition [7] 10 8 Static 

D6 Effect of Proportional Control on Pattern Recognition [7] 10 8 Dynamic 
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III. RESULTS 

 
The performance of each feature is shown in Fig. 2, along 

with the TD feature set for comparison. The left (a) and right 
(b) sides of the figure show the results for the static and 
dynamic data sets, respectively. Note that while the TD 
features produced the lowest average error in both cases, 
only the 8CH dynamic data sets showed a significant 
improvement (p<0.05) over the ENT and WAMP features 
alone. Fig. 3 shows the performance of the full TD feature 
set compared to the combination of the TD set plus each of: 
the AR features (+AR), the CC features (+CC), the WAMP 
features (+WAMP), and the ENT features (+ENT).  Note that 
when using 8 channels, none of the features added 
significant discriminatory ability to the TD feature set. 
Conversely, when using only 4 channels, nearly all of the 
features added significant information. 
 

Fig.4 shows the results for the same conditions as Fig. 3, 
using a SVM instead of the LDA classifier. Using the SVM, 
the WAMP significantly outperformed the TD and frequency 
domain features in the dynamic data sets. 

 
 
 Fig. 5 shows the difference in performance of the LDA 
and SVM classifiers, calculated using LDA error - SVM 
error. Superior SVM performance is therefore shown as 
positive values, while superior LDA performance is shown 
as negative values.  Note the strong interaction between 
contraction dynamics and classifier; the static data sets favor 
the LDA, while the dynamic sets favor the SVM.   
 

 
Figure 5 - Mean difference in classification error (%) between 
the LDA and the SVM classifiers for the dynamic (a) and static 

(b) data sets. Results were computed using LDA – SVM, so 
positive numbers indicate superior SVM performance.  Note 

that the * symbols denote a significant difference (p<0.05) 
between classifiers. 

 
The computational ease of the WAMP feature and its 

superior performance during dynamic tasks makes it a 
desirable addition to Hudgins’ TD feature set [14]. Fig. 6 
shows that the performance benefit of the +WAMP is 
maintained (p>0.05) even when replacing any one of the SC, 
ZC, MAV or WL features with the WAMP.  

  

 
Figure 6 - Mean classification error (%) when adding the WAMP 

feature to the TD set, or replacing any one of the TD features 
with the WAMP, for the static (a) and dynamic (b) data sets.  

IV. DISCUSSION 
Data compiled from six different data sets spanning five 

years were analyzed in this work. In all, these results 
represent over 60 user sessions, totaling more than 2500 
separate contractions. These data were used to examine the 
performance of different feature sets, classifiers, number of 
channels and contraction dynamics.  

As commonly reported [1], the TD feature set performed 
well when using 8 channels and static contractions. In fact, 
no significant improvement was seen when adding 
additional features, or between the LDA and SVM. As the 
complexity of the problem was increased, however (by 
reducing the number of channels or increasing the data 
variability using dynamic contractions), improvement was 
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Figure 3 - Mean LDA error (%) of the TD and TD+ feature 
sets for the static (a) and dynamic (b) data sets.  Note that * 
and + symbols denote a significant improvement (p<0.05) 

over the TD, and the +AR and +CC feature sets, 
respectively. 
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Figure 4 - Mean SVM error (%) of the TD and TD+ feature 
sets for the static (a) and dynamic (b) data sets.  Note that * 
and + symbols denote a significant improvement (p<0.05) 

over the TD, and the +AR and +CC feature sets, 
respectively. 
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achieved by including additional features and differences 
between the classifiers emerged.  

When using static data, the classes are more highly 
separable resulting in sparsely populated boundaries, 
rendering the choice of classifier less important. As dynamic 
data are added, the interclass space becomes more populated 
placing higher importance on the method of discrimination. 
The superiority of the SVM in these cases implies that these 
boundaries may become non-linear. The superiority of the 
LDA in static experiments is less clear; it may be that the 
training exemplars used by the SVM in these cases do no 
readily depict the true decision boundaries. 

Although several features offered improvement over 
Hudgins’ TD feature set [14], the performance of the WAMP 
feature was of particular interest; combined with the TD 
features, this simple-to-calculate time domain feature 
significantly (p<0.05) outperformed the more complex 
frequency based +AR and +CC sets in the dynamic data sets. 
This improvement was consistent for even the 8 channel 
case when using the SVM classifier. Furthermore, it was 
found that a similar improvement (p>0.05) could be had 
when replacing any one of the TD features with the WAMP.  

Ultimately, given the desire to improve the clinical 
reliability and robustness of pattern recognition systems, the 
more challenging dynamic data sets may provide more 
meaningful and telling test cases for algorithmic 
comparisons. This works shows that they reveal differences 
not readily visible when using highly constrained and 
separable data. 
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