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Abstract— We present a mixed-signal architecture for imple-
mentation of independent component analysis designed for the
task of blind source separation of acoustic sources interfacing
miniature microphone array. The matrix-vector multiplication
is implemented through integration of switched current sources
controlled by the pulse-width modulated signals. The proposed
architecture implementing 3x3 static ICA in 0.5um CMOS
technology occupies chip area of 0.49 mm? with the power
consumption of 80uW at 5 V supply voltage.

I. INTRODUCTION

A person can seamlessly focus and understand a specific
speaker under various levels of the background noise. How-
ever, the performance of the current state-of-the-art hearing
aids, as well as the speech recognition software, significantly
deteriorates with other speakers present in the background.
Smart sensing hearing aids could greatly benefit from robust
speech separation in adverse acoustic environments.

We have proposed an algorithm that combines in a unique
framework the spatial sampling, sub-band processing and
independent component analysis to achieve improvement in
the separation performance in moderate reverberant acoustic
environments [1], [2]. The hardware implementation of the
proposed algorithm requires a 16-channel 3x3 linear static
ICA architecture leading to stringent constraints on the chip
area and power consumption of a single ICA channel. These
constraints are not met in various proposed implementations
of static ICA in either analog [3], [4] or digital domain [5],
[6]. In the proposed implementation, we exploit the pulse
width modulation to implement matrix-vector multiplica-
tion [7], [8] in order to meet the constraints on area and
power consumption.

II. INDEPENDENT COMPONENT ANALYZER
ARCHITECTURE

The independent component analysis is the signal pro-
cessing technique for obtaining independent directions in
multivariate data. In many cases it is exploited for the blind
source separation (BSS), where the task is to recover the
unknown sources s from their mixtures x, without prior
information on them, except their independence. We assume
that the mixing is linear x = As and that there exists an
unmixing matrix W that would recover original sources,
y = Wx, up to a scale and ordering uncertainty.
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The independent component analysis implementation
comprises the vector-matrix multiplication y = Wx and
adaptation of the unmixing matrix coefficients according to
an ICA learning rule. A wide variety of ICA learning rules
have been proposed in the literature [9]. We implemented
the natural gradient learning rule [10]

AW =pu (I- f(y)y" )W = (W — f(y)z"), (1)

where the f(y) presents a nonlinear scalar function, which
in information-theoretic framework can be related to the
cumulative distribution function of the unknown source sig-
nals. As the proposed implementation is intended for the
acoustic source separation of the speech signals, that are
approximately Laplacian distributed, the optimal choice of
the nonlinear scalar function f(y) is sign(y). For efficient
implementation, a feedback signal z = W7y in the learning
rule can be approximated by a 3-level staircase function
(=1,0,41), a function implemented using 2-bit quantization
denoted as ¢(z). The quantization of the signal z in the
update rule (1) simplifies the implementation of the update
rule to a single-bit outer-product.

The block diagram of the proposed architecture for the
implementation of the ICA algorithm is shown in Figure 1.
In the Figure 1, the notation < x; > and < y; > denotes the
pulse-width modulated signals controlled by the input signal
z; and the output signal y;, respectively.

III. CIRCUIT IMPLEMENTATION

The independent component analysis implementation
comprises the vector-matrix multiplications y = Wx and
z = W7y along with the adaptation of the unmixing matrix
coefficients according to learning rule (1). There are two
main circuit blocks that will be described, the adaptation
cell and the voltage-to-time conversion circuit following the
current integration.

A. Learning Rule Implementation

In the proposed implementation, the unmixing coefficients
W, are stored differentially as voltages VJ and V;; on two
complementary switched current sources [11] as shown in
Figure 2(a). For clarity of the Figure, we have omitted the
replica of the current source My that contributes to the 4;
and i; currents through the switches controlled by < z; >
and < y; >, respectively. The outer-product update rule (1)
is implemented using two transistors with the functions f(y)
and ¢(z) time encoded, as illustrated in Figure 2(b).
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Fig. 1. Block diagram of the architecture of the Independent Component Analyzer with 3x3 unmixing matrix.
The proposed implementation enables fine updates of the i ij+ Vint
unmixing coefficients with both positive and negative incre-
ments. The 3-level staircase function ¢(z) is approximated <xﬂ'>—| |—<x*i'>+<yff>
j j

with the presence/absence of the voltage pulse and by the
relative position of the pulse. The function f(y) is coded as
a two-level signal, with the sign(y) determining the order
of the levels V}, and V};. These voltage levels are applied
externally and control the value of the adaptation rate u.
To reduce the required silicon area the C, is implemented
as a MOS capacitance with the total capacitance of 2 pF.
When the update signals goes high, the charge on the small
parasitic capacitance on the drain/source diffusion between
transistors M and Ms, denoted as Cp, and C, is shared.
The resulting voltage change on the capacitor C, is given
by

Cr Vi) @

Viiln+1 =V [n] + m(VXz‘j [n] —V;;
The common mode component %(W;r + W, ) is regulated
by the weight decay term on the right side of (2), pulling
the values towards the center of the range.

The effect of the charge injection and the clock
feedthrough on the adaptation can be modeled as a constant
offset plus the contribution that is dependant on the voltage
Vi; which scales the decay term in the learning rule. The
current source transistor M, is sized to operate in the
subthreshold region of operation with the range of currents
that represent W;; from 100 pA to 100 nA. The advantage
of the nonlinear transformation of stored voltages V;; into a
current representing the unmixing coefficient W; is a wide
dynamic range of coefficients over a limited linear range of
stored voltages.

B. Matrix-Vector Multiplication

The vector-matrix multiplications y Wx and z
W7y are implemented by integrating switched currents
controlled by a pulse-width modulated signal. To minimize
the chip area, the two multiplications and the quantization of
the signal z are implemented in three phases using the same
the integration and voltage-to-time conversion circuitry. In
the first phase, y is computed along with the voltage-to-time
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Fig. 2. (a) Circuit implementation of the ICA learning rule. (b) Time-

encoding of the functions f(y) and q(z) along with the timing of the update
pulse.

conversion of x; in the second phase, z is computed along
with the voltage-to-time conversion of y and in the third
phase, the quantization of the signal z through voltage-to-
time conversion is performed.

The implementation of the integration and voltage-to-time
conversion is illustrated in Figure 3(a), with the correspond-
ing clock timings of each switch shown in Figure 3(b).
Clocks ¢ and ¢o, as well as ¢5 and ¢¢ are non-overlapping
clocks. Both the input and the output signal are differential,
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Fig. 3. Integration of switched currents and voltage-to-time conversion
circuitry.

as well as the coefficients of the mixing matrix:

3

yh =Y (Wihat + W a7) 3)
j=1
3

Yy = Z(Wz;% + W;grx;) 4)
j=1

Current pulses are integrated on the capacitor Cj,; and
the size of capacitor Cj,¢ is 2 pF. In the voltage-to-time
converter, the input voltage signal precharges the integration
capacitor Cy. The current fed into the input node of the
inverting high-gain amplifier discharges the capacitor. A
comparison of the decreasing voltage ramp signal at the
output node of the amplifier with a reference voltage Vo)
generates a pulsed signal with a pulse width proportional to
the input voltage. The high-gain amplifiers are implemented
as cascoded amplifiers operating in sub-threshold region of
operation with the input PMOS transistor. The integrator is
also followed by the sample-and-hold circuit that holds the
output signal y;.

As the pulse-width modulated output signals < y;r >
and < y, > are available, with a single D-latch the sign
of the y; is determined. To generate the quantized signal
q(z;), a comparison with a positive and a negative threshold
voltage Vy;, is required. As in the case of the output signal y;,
both pulse-width modulated z;~ and z; signals are available.
The comparison with the threshold voltage is performed
by delaying one of these pulses before the connection to
the input of the D-latch. Voltage V), controls the threshold
voltage by controlling the delay time. In Figure 4, a single
comparison of signal z; with a threshold voltage is shown.

Vid

<Z;>

Fig. 4. Implementation of the comparison of signal z; with a threshold
voltage for generation of the quantized signal g(z;).

Fig. 5.
ogy.

Layout of the proposed implementation in 0.5um CMOS technol-

IV. SIMULATION RESULTS

The proposed architecture was implemented in 0.5um
3M2P CMOS technology and the layout is shown in Fig-
ure 5. The total area of the 3x3 static ICA implementation
is 0.49mm?. The simulation of the circuit was performed on
the extracted layout.

To demonstrate the adaptation process, we have simulated
the adaptation cell shown in Figure 2, with a constant
sign of the update. The incremental values of the unmixing
coefficient as the current of transistor M, are shown in
Figure 6.

The output voltage of the integrator y; is shown in
Figure 7 for three different values of the unmixing coefficient
W11 while the other current sources representing unmixing
coefficients are switched off. The input voltage x; is varied
from 1 V to 4 V. The measured linearity of the matrix-vector
multiplication is 0.05%.

The proposed implementation of the ICA algorithm for the
acoustic source separation in hearing aid applications was
modeled in Matlab. To demonstrate the separation perfor-
mance, the speech signals originating from two sources were
artificially generated as received on the four microphone
array with the distance between opposing microphone pairs
set at 1 cm and with the sampling frequency of 16 kHz. The
incidence angles of the two speech sources were 30° and 70°.
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Fig. 6. Successive incremental updates of the unmixing coefficient in a
single direction.
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Fig. 7. Linearity of the matrix-vector multiplication for three different

values of the unmixing coefficient.

Two first-order spatial gradient signals were obtained [2] and
used as inputs to the model of the proposed ICA implementa-
tion. A white, spatially uncorrelated Gaussian noise sources
were added to each sensor. The separation performance
is quantized as the signal-to-interference ratio(SIR) in the
output signals. The signal-to-interference ratio is computed
as

> < yp > —max; < yF >

SIR = —10log;, min , )

max; < y; >
where y;; is the contribution of the signal j to the output
signal . SIR, for different signal-to-noise ratio(SNR) in the
sensor signals, is shown in Figure 8.

V. CONCLUSION

We have presented an architecture and circuit implemen-
tation of an independent component analyzer for the use
in a blind acoustic source separation microsystem using
microphone array for hearing aid applications. The proposed
pulse width modulation implementation allows a power and
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Fig. 8. The separation performance expressed as SIR in the output signals
for two incident speech signals on miniature microphone array.

silicon area efficient application that can be used to realize
multi-channel subband blind source separation and extended
to other neural network applications.
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