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Abstract—This paper proposes a low-power fall detection 

algorithm based on triaxial accelerometry and barometric 

pressure signals. The algorithm dynamically adjusts the 

sampling rate of an accelerometer and manages data 

transmission between sensors and a controller to reduce power 

consumption. The results of simulation show that the sensitivity 

and specificity of the proposed fall detection algorithm are both 

above 96% when applied to a previously collected dataset 

comprising 20 young actors performing a combination of 

simulated falls and activities of daily living. This level of 

performance can be achieved despite a 10.9% reduction in 

power consumption.   

I. INTRODUCTION 

Falls and injuries caused by falls are a major threat to the 
health of older people. A recent study shows that about 40% of 
older people aged over 70 years fall at least once per year, and 
half of these fall two or more times per year [1]. Thus, there is 
an increasing impetus to develop automatic fall detectors to 
detect fall events in real-time and send an alarm to a medical 
care service provider for immediate assistance. However, fall 
events happen very rarely relative to the duration of the 
monitoring time, and the battery life of a wearable fall detector 
is limited. If the fall detector is not efficient in the way it 
utilizes power, its battery life will be short and users will have 
to frequently recharge the device. Thus, one important 
development trend for fall detectors is to incorporate 
low-power technologies to prolong the battery lifetime. 

Currently, low-power technologies have been widely 
applied to wearable medical devices, providing energy 
savings through improved design of sensing [2] and 
processing [3] hardware, data transmission protocols, and 
software optimization. Coding efficiencies include selecting 
features with low computational complexity using machine 
learning [4], and compressing signals to reduce the amount of 
data transmitted by wireless communication [5].  

Despite general work in the area, there are only very 
limited reports of these power-saving approaches being 
applied specifically to the field of fall detection [6], [7]. Such 
reports are mainly focused on reducing the power 
consumption of wireless transmission by optimizing wireless 
protocols or managing the wireless communication module 
based on whether a fall happens or not. To the best of our 
knowledge, no paper has focused on energy efficiency from 
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the perspectives of sensing and processing kinematic signals 
generate by fall detectors. In this paper, we propose a 
low-power fall detection algorithm which dynamically adjusts 
the sampling rate of the accelerometer and manages the data 
transmission between the sensors and the controller. 

II. LOW-POWER FALL DETECTION ALGORITHM 

A.  Dataset  

The dataset used to design and evaluate the proposed 
algorithm is based on that described previously by our group 
in [8]. These data were acquired using a triaxial accelerometer 
and a barometric pressure sensor. The sampling rate of the 
acceleration data was 40 Hz, and the sampling rate of the 
barometric pressure data was 1.8 Hz. The noise in the 
barometric pressure measurement had a root-mean-square 
error (RMSE) of 1.5 Pa, which equates to a resolution in terms 
of altitude of about 12.5 cm. The data were obtained from 20 
younger actors performing a set of simulated falls and 
activities of daily living (ADL) (Table I).  

Using a 40 Hz sampling rate for the acceleration data is 
sufficient to reliably capture the impact of a fall [9], but this 
will result in higher power consumption if the accelerometer 
continuously samples at this rate. It is ideal for the 
accelerometer to sample the acceleration at a high rate only 
when a fall event happens, and to sample the acceleration at a 
low rate to save power at other times. However, any lower 
sampling rate must guarantee the accelerometer does not miss 
features of the falling phase [10] and thus the algorithm must 
have the capacity to adjust the sampling rate in a timely 
manner from low frequency to high frequency for the 
anticipated fall impact phase. The duration of the falling phase 
of the unbroken fall is expected to be 0.4-0.8s, so the 
acceleration signal with sampling rate of 5 Hz can provide 
sufficient information to describe this phase according to the 
Nyquist–Shannon sampling theorem. For the purposes of the 
simulations described herein, the acceleration signal with a     
5 Hz sampling rate is derived by down-sampling the original 
acceleration signal with the sampling rate of 40Hz, and the 
algorithm will be evaluated on these two kinds of acceleration 
data.  

B. Fall Detection Algorithm 

The proposed algorithm is an augmented version of the 
algorithm in [8] based on a digital accelerometer and a 
barometric pressure sensor, each with their own internal 
buffer. The algorithm has a parallel structure with two threads.  
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TABLE I.  TRIALS CONTAINING EIGHT SIMULATED FALLS AND EIGHT 

ACTIVITIES OF DAILY LIVING. 

Sequence Category Instructions 

1-3 Fall Forward, backward, lateral fall, ending lying 

4 Fall Forward fall, ending active lying 

5 Fall Forward fall with attempt to break the fall 

6 Fall 
Resting against a wall, then sliding vertically 

down to the end in the sitting position 

7-8 
Fall with 

recovery 
Forward fall, recovery and walking or standing 

9-10 No fall Sitting on or collpsing into a chair 

11 No fall Climbing into bed 

12 No fall Jump in vertical direction 

13 No fall Pick up something from the floor 

14 No fall Bend down and doing own shoelaces 

15 No fall Taking the lift (one floor, down) 

16 No fall Walk down stairs (6 steps) 

One thread is triggered by the acceleration data, and another is 
triggered by the barometric pressure data. Each thread sets 
different global software flags based on the features from both 
acceleration and pressure data. 

In the thread triggered by the acceleration data (Fig. 1), in 
order to reduce power wastage, there are several prerequisites 
to trigger a higher acquisition rate, including comparing the 
tilt angle and the signal vector magnitude (SVM) with a 
predefined threshold. After passing these criteria and 
increasing the sampling rate, the algorithm will extract 
different features from the acceleration data, and compare 
them with predefined thresholds to make the decision whether 
to set the related flags.  

Additionally, the algorithm will also manage the data 
transmission from the sensor to the controller. Specifically, 
the term data transmission refers to communication between 
different chips on board along different buses, such as Serial 
Peripheral Interface (SPI) or Inter-Integrated Circuit (I2C) 
buses. The controller usually needs be active to participate in 
the above process of communication. Note that the controller 
is the major source of energy consumption, frequent data 
transmissions will increase the time that the controller spends 
waking from a low-power state; controllers usually operate at 
high power usages during wake-up at its internal circuits 
initialize. And a large amount of data transmitted by the buses 
will also increase the wake-up time of the controller. Thus, it 
is energy efficient to reduce frequency and amount of data 
transmission from the sensors to the controller.  

The algorithm has a screening step to achieve this goal. In 
the screening step, the controller only acquires three samples 
from the sensors and calculates simple features. If the features 
reflect some signs of a possible fall, the controller will then 
trigger the acquisition of more information to accurately 
detect the fall, otherwise the controller will go back to sleep to 
save power and not acquire subsequent data from the sensor 
until new data show a sign of a possible fall at a later time. 

In more detail, the controller will initially acquire 
acceleration data at a lower sampling rate. If there is no sign of 
a possible fall event, the sampling rate will not change. 
However, when the SVM of the raw acceleration is lower than 
a threshold (thr_r), the controller will calculate the related 
features. If the features cannot meet the screening conditions, 
the controller will return to sleep immediately. After passing 

all the screening steps, the controller will switch the 
accelerometer to sample at a higher rate for two seconds, and 
then extract the body acceleration (BA) and gravitational 
acceleration (GA) components based on a data window that 
contains acceleration at the lower sampling rate acquired 
during a possible “falling” phase and data at a higher sampling 
rate during a possible “impact” phase. The algorithm updates 
the upper threshold of tilt angle (thr_ha) according to the GA 
component. In the BA component, if there is an abnormal 
SVM spike, the algorithm will set an impact flag. After two 
seconds of high-speed sampling, the algorithm will adjust the 
sampling rate of the accelerometer back to the lower rate. 
Once the impact flag is set, this thread will affect the access 
behavior of the controller to the barometric sensor’s FIFO (a 
hardware capability of recent barometric pressure sensors). 
The controller will retrieve the data before and after the point 
of possible impact, and then calculate the delta pressure (the 
average differential pressure). If the delta pressure is higher 
than the threshold (thr_hp), the algorithm will set a ground 
flag, indicating a possible fall. After setting the ground flag, 
the algorithm will search for a negative delta pressure peak. If 
it exists and the tilt angle is below the threshold (thr_ha), the 
algorithm will set the recover flag.  
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Fig. 1  The processing thread triggered by acceleration, focused on 

detecting the fall types 1-4 and 7-8 of Table I which have an obvious impact 

event. 
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In the thread triggered by the pressure data (Fig. 2), if the 
absolute value of the difference between the current pressure 
data and a pre-configured pressure reference is higher than the 
threshold (thr_hp), the barometric pressure sensor will trigger 
an interrupt to the controller, and the controller will be woken 
to analyze the difference. If the difference is negative, and the 
direction of the trunk is near vertical, the algorithm will set a 
recover flag and update the pressure reference. If there is an 
abnormal positive peak in the delta pressure signal, the 
algorithm will additionally check the signal magnitude area 
(SMA) to see whether there is an obvious movement near the 
time of the local maximum of the delta pressure, since the fall 
event is expected to occur with increased movement activity. 
If the features meet the above conditions, the algorithm will 
monitor the acceleration signal at the lower sampling rate for 
60 s after this sudden pressure increase. If the SMA is 
continuously low, and the direction of the trunk is 
continuously near the horizontal, it means that the person has 
been lying on the ground for a long time, and the algorithm 
will set the slump flag.  

Finally, the algorithm will make a judgment as to whether 
a fall occurred and whether the person has recovered after the 
fall, based on the status and relative timing of the different 
flags. If the time between the impact flag and the ground flag 
is less than 6 s, and there is no recover flag in the following 20 
s, the algorithm determines that a fall event has occurred. If 
the slump flag is set, and there is no recover flag in the 
following 60 s, the algorithm determines that the person has 
slumped and lost consciousness.  

Fig. 3 shows a representative example of the algorithm 
dynamically adjusting the sampling rate of the accelerometer 
and managing data transmission between the sensors and the 
controller.  

 

III. RESULTS 

The proposed algorithm is evaluated in MATLAB to 
determine the performance of fall detection algorithm and the 
reduction in power consumption based on the specific 
hardware design. The accuracy, sensitivity and specificity for 
all simulated trials are shown in Table II. The accuracy, 
sensitivity and specificity of the proposed algorithm are 
95.9%, 96.7% and 96.9% respectively. 

The performance in terms of energy efficiency is measured 
by the difference between the average power consumption of 
sensing and transmitting parts of the system using the original 
algorithm and the low-power algorithm from each trial. The 
calculation of power consumption is as follows: 
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where Ps+t is the power consumption of sensing and 
transmitting data around the board, Pi, j  is the sampling power 
of a sensor i when it works in a status j (high sampling rate or 
low sampling rate), ti ,j  is the corresponding time for which  Pi,j  
is consumed, Pc is the power of active controller, Di is the 
amount of data generated for sensor i in a trial, BRi is the 
byte-rate of the communication protocol (such as SPI) 
between sensor i and the controller, Di /BRi represents the time 
consumption caused by data transmission, and ttotal is the 
duration of a trial.  

Here it is assumed that the controller is an 
MSP430FR5737 (the active current is 1 mA), the 
accelerometer is an ADXL362 (the current in the measure 

mode with a sampling rate of 40 Hz is 1.75 A, the current in 
the wake-up mode with a sampling rate of 6 Hz is 270 nA), 
and barometric pressure sensor is a LPS25H (the current is 25 

A), the voltage of the system is 2 V, and the clock frequency 
of the SPI interface is 1 MHz. As a result, the power 
consumption using original algorithm and using the 

low-power algorithm are 57.4 W and 51.1 W respectively 
for each trial, and the reduction of the power consumption is 

start

|P- P_ref|>thr_p

acquire 20s P 

before and after 

changing point

N

tilt angle> thr_la

Y

set slump flag

set recover flag

P-P_ref>0
N

ΔP> thr_hp

Y

acquire 5s acc 

before and after 

max ΔP

SMA > thr_hs

Y

N

update thr_ha

tilt angle< thr_ha

acquire 60s acc 

from max ΔP

SMA > thr_ls
Y

N
tilt angle> thr_la

Y

N

N

Y

N

Y

N

Y

N

update 

thr_p

update 

thr_p

Y

 

Fig.2  The processing thread triggered by pressure focused on detecing 

the fall types 5-6 which do not have an obvious impact event. 

 

 

 

 

Fig. 3  Acceleration and barometric pressure data from a trial of simulated 

falls, where the blue curve represents the acceleration signal with a 6 Hz 

sampling rate, and red signals represents the acceleration signal with a 40 Hz 

sampling rate.  “Transmitting window” refers to the data transmitted from 

sensors to the controller. 
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6.3 W. The power saving achieved by lowering the sampling 

rate is 2.9 W, while the power saving due to a selective data 

transmission window is 3.4 W. 

IV. DISCUSSION AND CONCLUSION 

From the results, the proposed low-power algorithm 
inherits high sensitivity and specificity from the original 
algorithm. The proposed algorithm performs slightly better 
than the original algorithm in terms of specificity, but has a 
slightly worse sensitivity. The differences in sensitivity and 
specificity between the proposed algorithm and the original 
algorithm are less than 1%. In total, the proposed algorithm 
only decreases in accuracy by 1.0 %. Despite this, the results 
show that the proposed algorithm successfully captures almost 
all information related to falls in a short sampling and 
transmitting window.  

Additionally, in terms of power efficiency, the proposed 
algorithm consumes less than the original algorithm, since the 
proposed algorithm only samples the acceleration at 40 Hz 
(high power consumption) when the data meets some 
triggering conditions, and samples the acceleration at 5 Hz 
(low power consumption) at all other times. By contrast, the 
original algorithm continuously samples acceleration at 40 
Hz. Besides, only the samples in the transmitting windows 
which possibly contain fall events will be transmitted to the 
controller for processing, so the wake-up time of the controller 

will decrease. The total reduction is 6.3 W (4200 mAh per 
year), and it could prolong the lifetime of the fall detector. 

To the best of our knowledge, very few papers [11, 12] 
have focused on low-power algorithms for wearable devices 
with an accelerometer. Kangas et al. reported an algorithm 
that collects the acceleration in event-trigger mode to 
minimize energy consumption and data transmission. Thirty 
samples with a sampling frequency of 6.25 Hz before the 
activation, 240 samples with a sampling frequency 50 Hz and 
then 20 samples with a sampling frequency of 6.25 Hz after 
the activation are collected [11]. However, the paper does not 
focus on the energy efficiency and only has a qualitative 
analysis about the decrease of energy consumption of the 
wireless transmission caused by this collecting method.  

French et al. reported a predicted sampling algorithm 
based on the distribution of durations and transition 
probabilities of specific activities [12]. The accuracy of over 
95% is achievable using only 3% of the samples. However, the 
intended use of the device is quite different from the fall 
detection task examined in this paper, and involves gait 
recognition and identification of ADL. Thus, it is acceptable 
for some latency and a relatively high false negative rate, but 
by contrast in the task of fall detection, the low false negative 
rate (high sensitivity) and low latency is a priority due to the 
criticality of the application. Thus the fall detection algorithm 
should operate in real-time, incurring the resulting energy 
costs.  

In the future, the performance of the energy efficiency of 
the proposed algorithm will be tested on a cohort of older 
subjects, and the trade-off between power consumption and 
detection accuracy will be studied. 

 
 

TABLE II.  ACCURACY, SENSITIVITY, AND SPECIFICITY OF THE ORIGINAL 

ALGORITHM AND THE PROPOSED ALGORITHM. 

 
Original 

algorithm 

Low-power 

algorithm 
Difference 

Accuracy (%) 96.9 95.9 -1.0 

Sensitivity (%) 97.5 96.7 -0.8 

Specificity (%) 96.5 96.9 0.4 
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