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Abstract— We present an electronic cortical neuron incorpo-
rating dynamic spike threshold and active dendritic properties.
The circuit is simulated using a carbon nanotube field-effect
transistor SPICE model. We demonstrate that our neuron has
lower spike threshold for coincident synaptic inputs; however
when the synaptic inputs are not in synchrony, it requires larger
depolarization to evoke the neuron to fire. We also demonstrate
that a dendritic spike is key to precisely-timed input-output
transformation, produces reliable firing and results in more
resilience to input jitter within an individual neuron.

I. INTRODUCTION

Recent studies have suggested that in neocortex and hip-
pocampus, the neural information is reliably conveyed by the
precisely-timed action potentials (APs) at the neuron’s output
[1]. In addition, research has shown that cortical neurons are
highly sensitive to synchronous inputs and have millisecond
temporal precision under rapid depolarization [2]. Some
evidence has supported the theory that the threshold to fire
APs of cortical neurons in vivo is sensitive to both the
amplitude and the rate of membrane potential depolarization
[3]. This mechanism suggests that the rapid depolarization
caused by coincident synaptic inputs can enhance reliable
and precisely-timed firing in the cortical neurons. Biological
cortical neurons are complex computational engines, each
performing nonlinear computations in the dendrites. By am-
plifying the post-synaptic potentials (PSPs) a local dendritic
spike can be evoked [4]. The propagated dendritic spikes
result in rapid depolarization at the somatic membrane, hence
they can reduce the threshold to fire APs and induce reliable
and precisely-timed spiking.

In this paper, we present an axon hillock neuromorphic cir-
cuit that embodies dynamic AP spike threshold using carbon
nanotube field-effect transistors (CNFETs). Our neuron has
lower spike threshold for coincident synaptic inputs and can
transform spatiotemporal input information into a precisely-
timed response by incorporating nonlinear dendritic compu-
tation with dynamic spike threshold. Neuromorphic circuits
can be used as testbed system for comprehensive non-
invasive brain study. Developing more bio-realistic neuro-
morphic chips incorporating the fine-grained mechanisms is
crucial to the in-depth understanding of the brain’s working
mechanism. Deeper understanding of how massively-parallel
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and efficient computations are achieved in the brain opens
up opportunities for neuromorphic computing.

In the next section, we discuss the neuroscience research
that shows a dynamic spike threshold mechanism in cortical
neurons. In Section III, we describe our biomimetic circuit
implementation. Then we present our HSPICE simulation re-
sults that demonstrate the impacts of dynamic spike threshold
and dendritic spikes on AP firing precision and reliability in
Section IV.

II. BACKGROUND AND RELATED WORK

Azouz et al. have shown that higher input synchronization
(spikes from different presynaptic neurons arriving at the
same time) induces lower spike threshold in their neuron
model in Fig. 1 compared to the constant threshold in the
integrate-and-fire neuron model [3]. The inverse correlation
between the spike threshold and the synaptic input slope rate
can be fitted with the equation shown in Eq. (1).

Fig. 1: The normalized dV/dt slope preceding a spike vs.
spike threshold. The dashed line indicates the threshold of
the integrate-and-fire neuron model. Figure from [3].

y = a+ b · e−τ/C , τ = dV/dt (1)

Several researchers in neuromorphic engineering have
implemented spiking silicon neurons. A network of integrate-
and-fire neurons was used to demonstrate temporal coding
in silico [5]. A silicon neuron with active dendrites to
reduce somatic jitter was presented [6]. However, in these
research efforts, rate-sensitive dynamic spike threshold was
not implemented. In our circuit, the dendritic excitability
is plastic and the spike threshold is dynamic which leads
to precisely-timed AP spikes and reliable firing. We have
chosen to simulate our circuits using a CNFET SPICE model
[7] for the following reasons: the carbon nanotube transistor
is a promising candidate for low-power circuit [8] and has
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superior biocompatibility compared to conventional CMOS
technology [9].

III. RATE-SENSITIVE AXON HILLOCK CIRCUIT

The axon hillock is responsible for triggering AP firing
in a neuron. Our biomimetic axon hillock circuit design is
shown in Fig. 2. In this paper, we augment our original
axon hillock module with a differentiation circuit component
at the input stage. The rate-sensitive axon hillock transistor
circuit is shown in Fig. 2. The idea is to emphasize the
temporal changes at the input and use a differentiator to filter
out slowly varying input patterns. In Eq. (2), if the slope
(dV/dt) on the left side of the equation is small, it results
a small V2. Hence it makes the axon hillock less likely to
fire spikes. Therefore, the rate-sensitive axon hillock circuit
has a dynamic threshold while the amplitude-sensitive axon
hillock circuit has a constant threshold.

d(V1 − V2)

dt
=

V2

RC
(2)

The color-shaded segments mimic the activation and in-
activation phases of the sodium and potassium channels as
well as the delay time for the sequence of events that define
the dynamics of an AP. First, the Na+-activation segment
(modeled by X1, X2) turns on Na+ channels (X8) rapidly.
After some delay (X4) Na+-inactivation (X3) then turns off
Na+ channels. This portrays the gradual inactivation of Na+

channels when the action potential reaches a depolarizing
state. After some more delay (X4), K+-activation (X10) turns
on K+ channels (X7). K+-inactivation (X9) turns off K+

channels after a longer delay (X5, X6 in series). The delay is
controlled by adjusting the strengths of transistors. We use
the resistive and capacitive properties of the transistors to
achieve the desired time constants.
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Fig. 2: Rate-sensitive axon hillock circuit at transistor level.

IV. HSPICE SIMULATION RESULTS

In this section, we present the simulation results to demon-
strate our neuron’s capability to fire AP spikes with dynamic
threshold. The biological AP parameters such as half-width,
amplitude, resting potential, and initiation threshold and their
scaled electrical counterparts are shown in Table I. Although
the circuits reported on here have voltages (hundreds of mV)
and timings (pico second) scaled commensurate with the
technology used, scaling to subthreshold voltages has been

performed on some of the circuits used, and delaying the
circuits to match biological timing will be straightforward,
since the fanin and fanout on order of magnitude 104 along
with dendritic and axonal attenuation models, can slow the
circuits appreciably to achieve real-time emulation. However,
accelerated emulation has a speed advantage if the appli-
cation is to use the circuits as a neuromorphic computing
system.

Parameter Biological Electrical
AP half-width 1 ms 5 ps
AP amplitude 110 mV 900 mV
Resting potential -75 mV 0 V (Ground)
AP initiation threshold -56 mV 158 mV

TABLE I: Biological and electrical AP spike parameters

A. Dynamic Spike Threshold Characterization

First, we investigate the scenario when the spike threshold
changes with synaptic input slope (dV/dt = VPSP/tr). Fig.
3 demonstrates the simulation results by testing the rate-
sensitive axon hillock circuit with different synaptic input
amplitudes (VPSP) and rise times (tr). It is observed that
when the PSP rise time increases, the amplitude of the PSP
required to evoke AP spikes increases as well. For example,
when tr is 100 ps, it fails to evoke spikes when VPSP is
160mV, but it evokes spikes when VPSP rises to 180 mV.

Then, we evaluate the effects of input synchrony on the
spike threshold and find a similar inverse correlation of spike
threshold and input synchronization to the computational
model Azouz et al. proposed (Fig. 1). Fig. 4 demonstrates the
dynamic spike threshold and suggests when the the synaptic
inputs are synchronous, fewer synapses are needed to evoke
an AP spike.
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Fig. 3: Spike firing threshold at different PSP rise time (tr)
and amplitudes (VPSP). The top panel shows one of the test
input PSP with different rise times (tr = 20, 100, 200 ps).
The rest of the panels show output AP characterized under
different tr (in the same panel) and VPSP (in separate panels).

B. Dynamic and Constant Spike Threshold Comparison

In this section, we study a neuron’s firing behavior
over dynamic spike threshold and constant spike threshold.
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Fig. 4: The inverse correlation between the spike threshold
and the synaptic input synchronization (represented as the
normalized slope.)

We implement two neurons, one configured with the rate-
sensitive axon hillock and the other configured with the
amplitude-sensitive axon hillock. In Fig. 5, the neuron with
constant spike threshold fires when the threshold (158 mV
in this configuration) is reached. However the neuron with
dynamic spike threshold fires at a lower threshold when
the synaptic input slope dV/dt is higher and fires at higher
threshold when dV/dt is lower. The synaptic input rise time
(tr) represents the synchronization level of the input, for
instance, the smaller tr is, the higher the input synchrony
is.

C. Effect of Dendritic Spike on Precise Spike Timing

In this section, we demonstrate that a dendritic spike
(dspike) can induce rapid depolarization (dV/dt) of the so-
matic potential and therefore evoke reliable spiking and more
precise spike timing.

To study the aforementioned effects, the same input tem-
poral and intensity profile has been applied to two neurons,
one with an active dendrite and the other without an active
dendrite. The active dendritic branch that models Calcium
Influx and Sodium Spike is shown in Fig. 6. The dendritic
excitability is modifiable through Threshold Adjustment and
the oneshot timing circuitry [10]. Because input arrival may
not be in perfectly synchrony, we test our circuits with
different levels of input jitter, eg. 2X, and 4X AP half-width.
For each test, a consecutive 40 trials were carried out with
varying stimulus intensity, such that the somatic potential
ranges from approximately -5% to +20% of the threshold
to initiate APs. A range of synaptic intensity is chosen
because of the stochastic nature of synaptic transmission, ion
channel gating and background synaptic noise [11]. We vary
the Neurotransmitter Release variable in our synapse circuit
to model the stochastic behavior of the neurotransmitter
release [12]. The neuron circuit at the transistor level is
simulated using HSPICE and then extrapolated into repetitive
trials stimulated at 20 GHz using MATLAB to demonstrate
the spiking pattern in raster plots shown in Fig. 7 for
different inter-stimuli intervals (ISIs) among the synaptic
inputs. It is observed that with a dendritic spike, the neuron
has enhanced spike timing precision and spike reliability
compared to the neuron without an active dendrite. The
raster plots also suggest that dendritic spikes can reliably
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Fig. 5: Comparison between dynamic and constant spike
threshold at different synaptic input (PSP) rise time (tr).

transform the synchronous input into precise spiking output.
The simulation results are shown in Fig. 8 and Fig. 9 for ISI
= 2 ps and 4 ps respectively.

V. CONCLUSION

In this paper, we demonstrate that our neuron can detect
and process coincident inputs with a depolarization rate-
sensitive axon hillock circuit. We also demonstrate that with
dynamic spike threshold, the neuron is more likely to fire
when synaptic inputs are synchronous. We further demon-
strate that the rapid depolarization induced by the active
dendrite (dendritic spike) can enhance the transformation
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Fig. 6: Active dendrite circuit at transistor level.
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Fig. 7: Raster plots for different levels of input jitter. (a, b):
synchronous input, ISI = 0 ps, no input jitter. (c, d): ISI = 2
ps. Input jitter, 10 ps, 2X AP spike half-width. (e, f): ISI =
4 ps. Input jitter, 20 ps, 4X AP spike half-width.

of spatiotemporal neural information into precisely-timed
responses. In addition, the neuron with active dendrites is
also more resilient to input jitter.
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