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Abstract— In the embryo development problem for the
Drosophila melanogaster, a set of molecules known as mor-
phogens are responsible for the embryo segmentation. These
morphogens are encoded by different genes, including the GAP
genes, maternal coordination genes and pair-rule genes. One of
the maternal coordination genes encodes the Bicoid morphogen,
which is the responsible for the development of the Drosophila
embryo at the anterior part and for the control and regulation
of the GAP genes in segmentation of the early development of
the Drosophila melanogaster. The work presented in this docu-
ment, reports a methodology that tends to integrate mechanistic
and data driven based models, aiming at making inference over
the mRNA Bicoid from gene expression data at the protein level
for the Bicoid morphogen. The fundamental contribution of this
work is the description of the concentration gradient of the
Bicoid morphogen in the continuous spatio-temporal domain
as well as the output regression (gene expression at protein
level) using a Gaussian process described by a mechanistically
inspired covariance function. Regression results and metrics
computed for the Bicoid protein expression both in the temporal
and spatial domains, showed outstanding performance with
respect to reported experiments from previous studies. In
this paper, a correlation coefficient of r = 0.9758 against a
correlation coefficient of r = 0.9086 is being reported, as well as
a SMSE of 0.0303±0.1512 against a SMSE of 0.1106±0.5090
and finally reporting a MSLL of −1.7036± 1.3472 against
−1.0151±1.7669.

I. INTRODUCTION

The comprehension of biological phenomena has dramat-
ically changed in the last 60 years due to the integration of
quantitative perspectives into life sciences, imposing physical
laws for the sake of making sense of biological data. As a
consequence different methodologies can be established to
solve a problem in terms of quantitative models. From the
point of view of molecular length scales, there have been
significant contributions, mainly in the fields of mathematical
modeling and scientific computing, projecting some of the
qualitative discussions hold in the mid 1900’s to a plane
where dynamical modeling showed that biology was also a
matter of physicists and mathematicians, presenting tradi-
tional discussions now in quantitative terms. The problem of
embryonic development comes as one of the most needed
and demanding challenges in mathematical biology [4].

As a biological model, the Drosophila melanogaster is
almost a standard test bench for the comprehension of
the biological, genetic and molecular basis of embryonic
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development [6], [7]. From the molecular perspective, it
is believed that the embryonic development is governed
by a set of molecules known as morphogens, which
propagate spatially from the anterior pole of the Drosophila
establishing a concentration gradient across the anterior-
posterior axis [3], [20]. Since 1952, it is considered that the
mechanism responsible for the concentration differentiation
across the AP (anterior-posterior) axis in the Drosophila
was a diffusion-reaction process [23]. Furthermore, the
importance of the Bicoid mRNA and the Bicoid morphogen
is discussed [14], and the role of the concentration gradient
of the Bicoid morphogen in the Drosophila embryogenesis
is also discussed [10], [11].

The idea behind the study of the morphogen gradients
is to establish a relationship between these molecules
and the proteins responsible for egg segmentation, in
order to predict the interactions present in the biological
process of embryonic development. For such novel purpose,
different experimental techniques have been applied to
the measurement of the morphogen’s concentration, which
include microarrays and mass spectrometry. Measurement
of the morphogen’s concentration could be done as well
by means of indirect techniques, which is, measuring a
variable which relation to the morphogen’s concentration is
known by means of deterministic expression or empirical
procedures [3], [6]. According to [23], these molecular
transport processes could be well model at a macroscopic
scale using diffusion-reaction partial differential equations,
which at the end can serve as a deterministic structure for
performing such indirect measurements.

The transcriptional regulation process was approached
using ordinary differential equations (ODE) together with
Gaussian processes [8], [9]. The approach targeted the
estimation of a transcription factor (excitation) using data
from the mRNA concentration (response) based on an
ODE that relates excitation and response. The approach
later received the name of a latent force model, and was
introduced in detail in [2]. Latent force models have been
widely used in the context of transcriptional regulation [5],
[19], [22]. Since the approach reported in [9] was only
based on ODEs, it could only capture the dynamic part.
The spatial variation was not examined, which is what
really contributes to the study of the transport processes
at the macroscale. A significant advance was made when
transcriptional regulation of the Bicoid morphogen included
the spatial dimension in the transcriptional regulation model
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[12]. This model is not completely accurate, though, given
the fact that the model is discretized in the spatial coordinate.

This paper presents a novel method for integrating
measurements with mechanistic models associated. The
proposed model namely Latent Force Model, imposes
a Gaussian process on the latent variable (input), and
determines a new Gaussian process for the observation
(output), where the covariance functions of the whole process
are determined based on a mechanistic model, particularly,
the diffusion reaction partial differential equation. This
methodology enables simulations of complex biological
processes within the context of embryo development, for
targeting experimental design in control mutations in the
Drosophila embryo development and for parametrizing a
biological system from information in the macroscale with
no specific regard to the nanoscale.

II. MATERIALS AND METHODS

A. Datasets

1) Synthetic Data: No source concentration is provided,
hence, to reproduce experimental data, we assumed a non-
homogeneous diffusion-reaction process [23]:

∂φα(−→r , t)
∂ t

= Dα

−→
∇

2
φα(−→r , t)+U(−→r , t), (1)

where φα(−→r , t) is the concentration of the chemical specie
denoted by α at position −→r and time t, Dα is the diffusion
coefficient of the chemical specie denoted by α and U(−→r , t)
is an input field at position −→r and time t. According to [12],
expression (1) must be modified, by introducing a destruction
or reaction term τ−1

p m(x, t) and by constraining the input
concentration U(−→r , t) to vary only with respect to time
(S0u(t)) to fulfill the demand that the mRNA concentration
must be localized in time and subsequent destruction of the
morphogen molecule, as follows:

∂m(x, t)
∂ t

= D
∂ 2

∂x2 m(x, t)− τ
−1
p m(x, t)+S0u(t), (2)

where m(x, t) is the Bicoid morphogen concentration, D is
the diffusion coefficient, τp is the proper time of source
destruction, S0 is the source sensitivity and u(t) is the
source concentration localized at the anterior pole of the
Drosophila egg (note that with relation to expression (1),
φα(−→r , t) → m(x, t), that is, the problem is treated as one
dimensional, and also note that the synthesis is encoded in
the sensitivity S0).
To reproduce the experimental data properly using model
(2), parameters D and τp must be measured in situ, and the
partial differential equation must be first discretized in space
to give a state equation of the form [21]:

∂m(t)
∂ t

= Am(t)+ su(t), (3)

where A is the matrix representing the Laplacian discretiza-
tion and s is the input parameter or sensitivity. Expression
(3) can easily be solved using a source function that properly

represents the localized mRNA concentration [12]. To solve
expression (3), using such source function, the following
procedure is used. The first step was generating the input
u(t) as proposed in [12] using the Heaviside function as
follows:

u(t) = δ (x)(h(t)−h(t− t0))+δ (x)h(t− t0)e
− t−t0

τm ,

where h(t) is the step function and δ (x) is the impulse
function. To solve the system (3), the following expression
is employed

m(t) = Φ(t, t0)x(t0)+
∫ t

t0
Φ(t,τ)s(τ)dτ, (4)

with Φ(t,τ) being the transition matrix [18].

2) Real database: The data set used is FlyEx1. FlyEx
database is a database available online with 4716 images
of 14 segmentation gene expression patterns obtained from
1579 embryos and 9500000 data records. Databases in FlyEx
have available data for all segmentation genes in Drosophila
early development in cycles 11-13 and for all temporal
classes of cycle 14A [15], [16].

B. Latent Forces

A latent force model [1], [2] is basically a Gaussian
process [17], with a covariance function that encodes the
behavior of a physical system, in either the spatial domain
or the spatio-temporal domain. In particular, the solution to
the equation (2) is given by:

m(x, t) = s
∫ t

0

∫ l

0
u(τ)G(x,ξ , t− τ)dξ dτ, (5)

where G(·) is the Green’s function associated to the PDE.
We assume that u(t) follows a GP prior with zero mean and
covariance function given by

Kuu(t, t ′) = cov
[
u(t)u(t ′)

]
= exp

[
− t− t ′

σ2
t

]
,

where σt is a parameter of the covariance model known
as the length-scale. Given that equation (5) is a linear
partial differential equation, m(x, t) can also be drawn from a
Gaussian process with covariance function Kmm(x,x′, t, t ′) =
cov [m(x, t)m(x′, t ′)], that can be written in the following form

Kmm(x,x′, t, t ′) = E
[
Qmm(x, t)Pmm(x′, t ′)

]
, (6)

where Qmm(x, t) and Pmm(x′, t ′) are given by:

Qmm(x, t) = s
∫ t

0

∫ l

0
u(τ)G(x,ξ , t− τ)dξ dτ

Pmm(x′, t ′) = s
∫ t ′

0

∫ l

0
u(τ)G(x′,ξ , t ′− τ)dξ dτ

A solution for the above expression can be found. For details,
see [2]. In order to make predictions and inference over the
source function u(t), the covariance function Kmu(x,x′, t, t ′)
also has to be provided. This covariance function can be

1http://urchin.spbcas.ru/flyex/
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calculated using Kmu(x,x′, t, t ′) = cov [m(x′, t ′)u(t)], leading
to

Kum(x,x′, t, t ′) = E
[

s
∫ t

0

∫ l

0
u(t ′)u(τ)G(x,ξ , t− τ)dξ dτ

]
(7)

A solution for the above expression can be found analytically.
The solution appears in [2].
Once the joint covariance functions are specified using the
analytic expressions obtained from solving the integrals in
equations (6), and (7), we could use the standard Gaussian
process formulae for the posterior over u(t) and the predic-
tive distribution over m(x, t). For details see [17]. Parameters
σt and S0 can be estimated by maximizing the evidence [17],
[13].

C. Methodology

The experiments performed for evaluating the proposed
method in the mentioned context used synthetic and real
data. Synthetic data was generated using expression (8) and it
was used to determined a theoretical expected for the input
and what kind of response would this excitation produce
(See theoretical expected in dashed blue in figure 1). The
real dataset (FlyEx database) was used in the training and
validation processes for the latent force model. Different
experiments were performed, and in each experiment data
from a different embryo was tested. For the training process,
all the samples from the database associated with an specific
embryo were used. Whilst, the validation process in each
case was performed using 20 samples in the space domain
and 10 samples in the time domain. For the specific case of
the latent force, since no data is provided, the training process
was performed using three samples of synthetic data and the
validation process was done using the theoretical expected.
For each of the regression profiles, both in the time domain
and in the spatial domain, the evaluation of the model was
performed using metrics such as SMSE (standardized mean
square error) and MSLL (mean standardized logarithmic
loss) [17]. The main interest is in the regression profile in
the spatial domain since it provides the necessary insight for
the gradient concentration of the Bicoid morphogen.

III. RESULTS AND DISCUSSION

The results reported in this paper are organized as
follows: the latent force inference, the output regression
and the performance metrics for the output regression. The
main contribution presented in this paper is the inclusion
of a time continuous - space continuous propagator for
building kernel covariance functions and this is in contrast
with the reported methodology in [12], which instead uses
a time continuous - space discrete propagator for building
the covariance functions.

In Figure 1, the result for the latent force inference is
shown (in red), against the result reported in [12] (in
magenta) and the theoretical expected (in dashed-blue).
There are two important regions that need to be targeted in
the inference, the stability regulation and the exponential

decay region [23], [15], [16], [11]. Compared to the
theoretical expected , the result reported in [12] fails to
reproduce the stability regulation, however, with regards
to the exponential decay tracking approximates fairly
well. The proposed methodology reproduced the stability
regulation regime with an oscillatory behavior during most
of its duration and tracked the exponential decay region
approaching much more to the theoretical expected as well
as the estimated value of the rate constant in comparison
with the result reported in [12].

In Figure 2, the output regression for a given input
space is shown. The test data [15], [16] (in black), the
output regression reported in [12] (in magenta) and the
output regression (in blue) obtained from applying the
proposed methodology. We also include the estimation
of the uncertainty (in dashed-red). The results show that
the outcomes of the model reported in this paper track
the events in the transient regime with a smaller error
approaching the observations) in respect with the result
reported in [12], which exhibits a plain exponential decay
with no other trend.
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Fig. 1. Latent Force Inference Using 120 Kernel Terms to Approximate the
Green’s Function: Inferred Latent Force (red), Theoretical Expected (dashed
blue), Inferred Result Reported by [12]
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Fig. 2. Regression of the Output in the Spatial Domain: Observations
(black), Output Regression (blue), Uncertainty of the Estimation (dashed
red), Reported Result in [12] (magenta)
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We know report the different performance measures evalu-
ated. With respect to the correlation coefficient, the proposed
methodology reported a correlation coefficient of r = 0.9758
against a correlation coefficient of r = 0.9086 calculated from
the methodology reported in [12]. With respect to error mea-
surement, the proposed methodology achieved a SMSE of
0.0303±0.1512 against a SMSE of 0.1106±0.5090 calcu-
lated from the reported methodology in [12]. Finally, for the
MSLL, our method reported a value of −1.7036± 1.3472,
contrasting with the value calculated from the methodology
reported in [12] which came to be −1.0151±1.7669.

IV. CONCLUSIONS

In this paper the results and analysis for the latent
force inference corresponding to the Bicoid mRNA
concentration in the Drosophila embryo development
problem were presented. The main contribution of the
proposed methodology is the inclusion of a continuous
Green function with respect to time and space in the
calculation of the covariance function for the Gaussian
process. The proposed methodology outperformed the results
reported in [12], approximating the stability regulation and
exponential decay region with high accuracy with respect
to the theoretical expected. With regards to the regression
of the output, the achievements that this paper accounts for
are the low uncertainty in the estimation of the predictions
of the output and the precision in predictions for a given
input space.

In general, the proposed methodology showed to perform
better in the tasks of inference of the mRNA stability
regulation and the Bicoid protein regression with respect to
the results presented in [12].
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APPENDIX

The solution function in (4), can be approximated using
the Euler-Runge-Kutta method as follows:

x j
k+1 = x j

k +
dt
6

(
λ

j
1 (k)+λ

j
2 (k)+λ

j
3 (k)+λ

j
4 (k)

)
, (8)

where index k stands for the time stepping and index j stands
for the space stepping. Furthermore,

ẋ(t) = f (t,x), Φ(t,τ) = L
[
(sI−A)−1

]
(t− τ)

λ
j

1 (k) = f (tk,x
j
k); λ

j
2 (k) = f (tk +

dt
2

,x j
k +

dt
2

λ
j

1 (k))

λ
j

3 (k) = f (tk +
dt
2

,x j
k +

dt
2

λ
j

2 (k))

λ
j

4 (k) = f (tk +dt,x j
k +dtλ j

3 (k)).

The parameters used in these simulations were obtained from
[15] and [11].
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