
  

 
 

Figure 1. System and intelligence. 
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Abstract— In the presence of unpredictable disturbances and 

uncertainties, cells intelligently achieve their goals by sharing 

information via cell-cell communication and making collective 

decisions, which are more reliable compared to individual 

decisions. Inspired by adaptive sensor network algorithms 

studied in communication engineering, we propose that a 

multi-cellular adaptive network can convert unreliable decisions 

by individual cells into a more reliable cell-population decision. 

It is demonstrated using the effector T helper (a type of immune 

cell) population, which plays a critical role in initiating immune 

reactions in response to invading foreign agents (e.g., viruses, 

bacteria, etc.). While each individual cell follows a simple 

adaptation rule, it is the combined coordination among multiple 

cells that leads to the manifestation of “self-organizing” decision 

making via cell-cell communication. 

I. INTRODUCTION 

All living systems, including microscopic cells (bacteria, 

animal cells, etc.), live in environments that are uncertain, 

dynamically-changing, and even hostile. However, it is 

remarkable that these systems survive and achieve their goals 

by exhibiting “intelligent” features such as adaptation and 

robustness. A multi-cellular population is composed of 

dynamically interacting cells or “agents” distributed over 

physical space and robustly adapting to environmental 

changes. Understanding distributed sensing, collective 

decision making, and cooperative control of such an 

intelligent multi-agent system is an interesting research topic 

not only for biology but also for many engineering fields, 

including adaptive sensor network and swarm robotics [1-3]. 

A. Multi-cellular intelligence emerges via self-organization 

One of the main goals of hematopoietic stem cells in a 

multi-cellular organism is to control cell number in response 

to dynamically changing demands. However, this population 

control can be disturbed by many factors as the environment is 

full of disturbances and uncertainties that are hard to predict in 

advance. In the presence of such disturbances and 

uncertainties, cells “intelligently” achieve their goal by 

constantly sensing (identifying) the current state and actively 

controlling it so that they can stably reach the target state. 

They gather information using sensors (e.g., cell surface 

receptor), make decisions using complex intracellular 
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molecular processes including gene expression, and take 

actions (e.g., cell division). Interestingly, although each cell 

determines its own action given local information, a higher, 

population-level behavior or pattern that achieves the target 

emerges via self-organization, a process in which a structural 

and/or functional pattern at the higher level of a system 

emerges from interactions among the autonomously acting, 

lower-level components of the same system [4]. 

B. Multi-cellular intelligence involves complex intracellular 

mechanisms  

As mentioned earlier, cells make “intelligent” decisions 

using complex intracellular molecular parts and processes. 

However, intelligent behaviors are often hard to explain using 

a reductionistic approach. For example, today’s 

microprocessor can be made up of billion transistors. Using 

the device, we can create an artificial intelligence program 

that can recognize fingerprints as shown in Figure 1. When a 

fingerprint recognition program is running on a computer, it 

would not be possible (or even meaningful) to examine how 

billion transistors are functioning over time. Similarly, 

precisely describing how intracellular parts are working while 

a cell exhibits intelligent behaviors (adaptation and 

robustness) might be an impossible to task to do (Fig. 1). 

However, traditional biological research approaches hardly 

allow models whose molecular mechanisms are not well 

defined. It has been suggested that unknown complex 

molecular mechanisms for intelligent multi-cellular behaviors 

can be modeled using mathematical algorithms derived from 

system identification and feedback control theory [5-10].  

C. Adaptive sensor network and collective decision making 

An adaptive sensor network consists of a set of nodes or 

sensors that make a detection decision using a collection of 
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Figure 2. The effects of the diffusion factor on the extracellular IL-2. As the 

diffusion factor increases the Teff cells maintain lower levels of extracellular 

IL-2 for a shorter period of time. 

individual sensing decisions. Its main features include 

adaptive mechanism (of individual sensors) and 

self-organizing behavior [1,2,11,12], suggesting that its 

mathematical formulation might be useful for modeling 

self-organizing behavior of a multi-cellular population in 

which each cell adapts to its changing environment. 

Previously, we have demonstrated that the effector T helper 

cell (Teff), which plays an important role in alarming the whole 

immune system in response to invasion by foreign agents (e.g., 

viruses, bacteria, etc.), can be modeled using an adaptive 

network algorithm [5]. The similarity between engineered 

adaptive sensor network and the Teff population has prompted 

us to investigate the mechanism of collective decision making 

of the Teff population shown in this study. 

D. An adaptive model for the Teff population  

In response to antigenic stimulation, Teff cells secrete IL-2. 

When secreted, IL-2 molecules can feed back and bind the 

IL-2 receptors (IL-2R) of Teff cells. As a result, intracellular 

STAT5 (Signal Transducer and Activator of Transcription 5) 

molecules become phosphorylated STAT5 (pSTAT5), which 

promotes cell survival and regulates the production (gene 

expression) of IL-2 [5]. 

    One interesting feature of self-organization is that complex 

behavior at the system level emerges when each system 

element follows a simple “adaptation rule” in response to 

environmental change sensed at the local level.  For individual 

Teff  cells, it has been suggested that they obey a simple 

adaptation rule [5]. Each cell adjusts or “adapts” the 

production/secretion of IL-2 with respect to the extracellular 

IL-2 concentration sensed via IL-2R so that both intracellular 

and extracellular IL-2 concentrations become similar. Note 

that this adaptive mechanism responds not to the absolute 

value of the extracellular IL-2 level but to its relative value 

compared to that of the intracellular IL-2 concentration [5]. In 

fact, this simple adaptive algorithm executed by individual Teff 

cells can filter isolated responses (possibly due to noise) of 

individual cells to antigenic stimulus while enhancing 

responses when the neighbor cells also detect the stimulus 

simultaneously, suggesting that adaptation of individual cells 

may have a critical role in converting unreliable decisions by 

individual cells into a more accurate cell-population decision 

to trigger an immune response. 

II. RESULTS 

A. Mathematical Model  

In this study, we use an adaptive structure for modeling the 

evolution of the extracellular IL-2 concentration, based on our 

previous model [5]. We focus on extracellular IL-2 because it 

has been reported that the extracellular IL-2 levels play an 

important role in initiating an immune response [13]. Assume 

we have m by n Teff cells in a plane with m rows and n 

columns. Each cell is denoted as cell(m,n). The intracellular 

IL-2 concentration of cell(m,n) can be expressed as: 
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where i is the iteration index, i2m,n is the intracellular IL-2 

concentration of cell(m,n), o2m,n is the extracellular IL-2 

concentration at cell(m,n), and am,n is the amount of antigen 

detected by cell(m,n) that represents antigenic strength. 

w1m,n(i) is a parameter that shows how the current extracellular 

IL-2 value, o2m,n (i), determines the next intracellular IL-2 

value, i2m,n(i+1), by controlling the production and/or 

secretion of IL-2. w2m,n (i) shows how strongly the current 

receptor-bound antigen level, am,n (i), is related to the next 

intracellular IL-2 value, i2m,n(i+1).  Note that both w1m,n(i) and 

w2m,n(i) are not fixed parameter values and can change 

adaptively at every iteration.  

     If we assume the concentration of secreted IL-2 at 

cell(m,n) is equivalent to its intracellular IL-2 concentration 

and the extracellular IL-2 concentration at cell(m,n) is the 

average of secreted IL-2 concentrations of the cell(m,n) and 

its eight adjacent cells (nine cells in total), the extracellular 

IL-2 concentration at cell(m,n) can be represented as: 
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where c is the diffusion factor, which was not present in our 

previous model [5]. Figure 2 shows that the o2m,n levels are 

dependent on how fast IL-2 molecules diffuse in the 

extracellular space under identical conditions (except for the 

diffusion factor). As the diffusion factor increases the Teff cells 

maintain lower levels of extracellular IL-2 for a shorter period 

of time. Denoting wm,n as the parametric vector [w1m,n, w2m,n] 

and um,n as the data vector  [o2m,n, am,n],  wm,n can be adaptively 

updated using the NLMS (Normalized Least Mean Squares) 

algorithm: 
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Figure 3. Density-dependent immune response triggering. (A) Simulated 

experiment results are shown for two cases when antigen-detecting cells 

are sparsely (top) and densely (bottom) distributed. The number of cells 

selected for antigenic stimulation is identical (20) for both cases. The 

figure shows that when the cell density is increased (bottom) the cells 

maintain higher levels of extracellular IL-2 for a longer period of time and 

very sparse or isolated responses (top) rapidly subside. These findings 

indicate that the density-dependent mechanism can filter sparse or 

isolated responses (possibly due to noise) while synergistically enhancing 

dense responses, thus converting unreliable decisions by individual cells 

into a more reliable cell-population decision. (B) When antigen-detecting 

cells are densely distributed, their extracellular IL-2 levels can rise above 

the arbitrary threshold shown, thus triggering an immune response.  

 

 
Figure 4. Uniformly distributed background noise has been applied to the 

model. (A) Simulated experiment results are shown for two cases with 

noise when antigen-detecting cells are sparsely (top) and densely (bottom) 

distributed. (B) When antigen-detecting cells are densely distributed, 

their extracellular IL-2 levels can rise above the arbitrary threshold shown 

unaffected by the existence of noise, thus triggering an immune response. 

However, threshold level decreases significantly in the presence of 

background noise. 

where the error term em,n is computed by subtracting  i2m,n(i) 

from o2m,n (i):  
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where 0 is the iteration step size (0.1 was used for the 

simulated experiments) and  in the denominator is a small 

positive constant  that avoids division by zero. Observe that 

cells influence each other through the averaging that is 

performed in (2) to determine the o2m,n, which plays an 

important role in initiating an immune response as stated 

previously. We will show that our adaptive model can filter 

isolated responses (possibly due to noise) of individual cells to 

antigenic stimulus while enhancing responses when the 

neighbor cells also detect the stimulus simultaneously, thus 

converting unreliable decisions by individual cells into a more 

reliable cell-population decision to trigger an immune 

response. 

B. Immune response triggering based on collective decision 

making 

Our adaptive model predicts that if a Teff cell detects 

antigen while neighboring cells do not, the cell will soon stop 

producing IL-2 since its intracellular IL-2 level will adapt to 

the near-zero extracellular IL-2 concentration (due to the 

diffusion process). On the other hand, if a Teff cell does not 

detect antigenic stimulus while many of its neighboring cells 

do, it will start producing IL-2 to adapt its intracellular IL-2 

concentration to higher extracellular IL-2 concentration. In 

other words, the IL-2 production/secretion of each cell is 

substantially affected by the density of neighbor cells that 

detect antigen. This is illustrated in Figure 3. In Figure 3A, 

simulated experiment results are shown for two cases when 

antigen-detecting cells are sparsely (top) and densely (bottom) 

distributed. The number of cells selected for antigenic 

stimulation is identical (20) for both cases. The figure shows 

that, while very sparse or isolated responses (top) rapidly 

subside, the cells maintain higher levels of extracellular IL-2 

for a longer period of time when the cell density is increased 

(bottom). These findings indicate that the density-dependent 

mechanism can filter sparse or isolated responses (possibly 

due to errors) while synergistically enhancing dense 

responses, thus converting unreliable decisions by individual 

cells into a more reliable cell-population decision. Figure 3B 

shows when antigen-detecting cells are densely distributed, 

their extracellular IL-2 levels can rise above the arbitrary 

threshold shown, thus triggering an immune response. 

We also applied uniformly distributed background noise 

v(i) to the model to examine the effect of environmental noise 

to our model (Eq. 6). v(i) generates random numbers that are 

uniformly distributed in the interval (0,10). Figure 4 displays 

the result which indicates that the existence of noise in the 

background does not affect the behavior of cells in terms of 

their collective decision making. 
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III. CONCLUSION 

In the presence of unpredictable disturbances and 

uncertainties, cells intelligently achieve their goals by sharing 

information via cell-cell communication and making 

“collective” decisions, which can reduce errors in decision 

making. In this study, we proposed an adaptive network model 

that can convert unreliable decisions by individual cells into a 

more reliable cell-population decision using the Teff 

population as an example. The study of collective 

decision-based sensing is a challenging problem in many 

biological fields. For example, the mechanism has recently 

been reported as a previously unrecognized survival strategy 

by which bacterial pathogens evade antimicrobial defenses 

and overwhelm the host [14]. Human stress hormones and 

cytokines can be detected by bacterial collective or quorum 

sensing systems, and by this mechanism, the pathogen can 

detect the physiologically stressed host, providing an 

opportunity to invade when the patient is most vulnerable. 

There also have been studies that suggest collective sensing 

may play an important role in cancer and stem cell biology. 

For instance, it has also reported that disruption of a collective 

sensing mechanism triggers tumorigenesis in mammary 

cancer stem cells [15]. These studies indicate that 

computational modeling of multi-cellular behaviors using our 

collective decision making model may lead to useful insights 

not only into immunology but also into other related 

biological fields, including microbial pathogenesis, 

embryonic development, tumor formation, drug resistance, 

etc. Furthermore, finding similar patterns in such diverse 

systems suggest that our adaptive approach is one of the 

“social interaction motifs” that may be commonly shared by 

many biological systems [16]. 

However, it is important to note that our model is a 

simplified one that does not take into account some of 

important biological complications. Among which is the time 

consuming nature of protein production after detecting the 

need for readjustment, i.e., our adaptive feedback model does 

not consider the unavoidable delay in protein production in 

order to adapt intracellular IL-2 concentration to extracellular 

IL-2 concentration. Furthermore, cell population dynamic 

mechanisms such as cell movement, division and apoptosis 

are shown to have considerable impacts and their effects need 

to be considered [17,18]. The physics of cellular 

microenvironment is another important aspect that should be 

considered. Considering the fact that cells interact and 

communicate through an aqueous environment, diffusion 

and/or fluid dynamics equations can also be incorporated into 

the model [19]. In conclusion, in order to have a more realistic 

model we need to address the aspects and complications 

mentioned above. Moreover, there are ways to modify our 

model using other adaptive algorithms like distributed 

Kalman filters [20, 21]. Finally, experiments should be carried 

out to validate our model. 

REFERENCES 

1. Sheng-Yuan T, Sayed AH. (2011) Mobile adaptive networks. IEEE 

Journal of Selected Topics in Signal Processing 5: 649-664. 

2. Cattivelli FS, Sayed AH. (2011) Distributed detection over adaptive 

networks using diffusion adaptation. IEEE Transactions on Signal 

Processing 58: 1917-1932. 

3. Shamma J. (2008) Cooperative control of distributed multi-agent 

systems. Hoboken: John Wiley & Sons, Ltd. 

4. Isaeva VV. (2012) Self-organization in biological systems. Biology 

Bulletin 39: 110-118. 

5. Shin Y, Sayed AH, Shen X. (2012) Using an adaptive gene network 

model for self-organizing multicellular behavior. Proceedings of 

International Conference of the IEEE Engineering in Medicine and 

Biology Society (EMBS), San Diego, CA, USA, Aug./Sep.: 

5449-5453. 

6. Shin Y, Sayed AH, Shen X. (2012) Adaptive models for gene networks. 

PLOS ONE 7: e31657. 

7. Shin Y, Hencey B, Lipkin SM, Shen X. (2011) Frequency domain 

analysis reveals external periodic fluctuations can generate sustained 

p53 oscillation. PLOS ONE 6: e22852. 

8. Shin Y, Chen K, Sayed AH, Hencey B, Shen X. (2013) 

Post-translational regulation enables robust p53 regulation. BMC 

Systems Biology 7: 83. 

9. Shin Y, Lipkin SM, Hencey B, Shen X. (2011) Disturbance rejection 

helps modulate the P53 oscillation. ASME Proceedings: Dynamics and 

Control in Medicine and Biology, Arlington, Virginia, USA, Oct/Nov 

2: 557-563. 

10. Shin Y, Bleris L. (2010) Linear control theory for gene network 

modeling. PLOS ONE 5: 1-16. 

11. Shamma JS. (2007) Cooperative control of distributed multi-agent 

systems. Wiley Online Library. 

12. Choi J, Oh S, Horowitz R. (2009) Distributed learning and cooperative 

control for multi-agent systems. Automatica 45: 2802-2814. 

13. Sojka DK, Bruniquel D, Schwartz RH, Singh NJ. (2004) IL-2 secretion 

by CD4+ T cells in vivo is rapid, transient, and influenced by 

TCR-specific competition. Journal of immunology 172: 6136-6143. 

14. Asad S, Opal SM. (2008) Bench-to-bedside review: Quorum sensing 

and the role of cell-to-cell communication during invasive bacterial 

infection. Critical Care 12: 236-247. 

15. Agur Z, Kogan Y, Levi L, Harrison H, Lamb R, et al. (2010) Disruption 

of a quorum sensing mechanism triggers tumorigenesis: A simple 

discrete model corroborated by experiments in mammary cancer stem 

cells. Biology Direct 5: 20-31. 

16. Xavier JB. (2011) Social interaction in synthetic and natural microbial 

communities. Molecular Systems Biology 7: 483. 

17. Wilson MR, Close TW, Trosko JE. (2000) Cell population dynamics 

(apoptosis, mitosis, and cell–cell communication) during disruption of 

homeostasis. Experimental Cell Research 254: 257-268. 

18. Johnston MD, Edwards CM, Bodmer WF, Maini PK, Chapman SJ. 

(2007) Mathematical modeling of cell population dynamics in the 

colonic crypt and in colorectal cancer. Proc. National Academy of 

Science of the United States of America 104: 4008-4013. 

19. Drescher K, Dunkel J, Cisneros LH, Ganguly S, Goldstein RE. (2011) 

Fluid dynamics and noise in bacterial cell-cell and cell-surface 

scattering. Proceedings of National Academy of Science of the United 

States of America 108: 10940-10945. 

20. Olfati-Saber R. (2007) Distributed kalman filtering for sensor 

networks. Proceedings of 46th IEEE Conferences on Decision and 

Control, New Orleans, LA, USA, Dec: 5492-5498. 

21. Khan UA, Moura JM. (2008) Distributing the kalman filter for 

large-scale systems. IEEE Transactions on Signal Processing 56: 

4919-4935. 

  

337


