
  

 

Abstract—Acoustic radiation force impulse (ARFI) 

technique is a quantitative method for tissue stiffness 

assessment. It has been proved to be less operator dependent 

than the quasi-static elastography, and has more simple 

hardware architecture than the supersonic shearwave imaging 

(SSI) technique, which make it easier to be miniaturized for 

some special clinical applications. However, unlike the SSI, 

ARFI cannot provide real-time 2D images of tissue stiffness 

distribution mainly due to its data-intensive and 

time-consuming algorithms. In this study, the algorithms of 

ARFI were modified and improved to fit for the parallel 

computation on graphics processing unit (GPU), and the 

quasi-real-time scanning-mode 2D ARFI images (s2D-ARFI) 

were implemented on a self-developed compact system. High 

ratio of the time consumptions between the algorithms using 

CPU and using GPU has been verified, and it was also proved 

that there was no distinct difference between the stiffness 

images obtained by these two methods. The s2D-ARFI provides 

us an additional choice for quantitatively imaging the tissue 

stiffness, and has a potential to be miniaturized and used in the 

emergency treatments in field first-aid and the donor 

evaluation for organ transplantation.  

I. INTRODUCTION 

Acoustic radiation force impulse (ARFI) method is also 
called as point shear-wave elastography (pSWE) [1], which 
performs a single-point quantitative tissue stiffness 
measurement and the result is displayed as a small color box 
superimposed on the B-mode image. In this method, shear 
wave is generated by the acoustic radiation force and its 
propagation is tracked by the pulse-echo ultrasound. Then the 
shear wave velocity is measured in a region of interest (ROI) 
and converted to Young’s modulus [2]. Commercial systems 
by Siemens and Philips have used this technique. Compared 
with quasi-static elastography, ARFI is quantitative and less 
dependent on the operator’s experience. However, it cannot 
provide two-dimensional (2D) images of shear modulus (or 
Young’s modulus) in the field of view, like the supersonic 
shear-wave imaging (SSI) can do. SSI can achieve a high 
frame rate of up to 20 kHz by transmitting a plane wave and 
acquiring echo signals simultaneously from all transducer 
elements. This makes it have the ability to follow the 
shear-waves in a 2D field in almost real time. However, this 
also requires SSI to use more complex hardware architecture 
and have more difficulty to be miniaturized than ARFI. In 
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fact, compact and portable ultrasound system with 2D 
stiffness imaging function is demanded in some special 
clinical applications, such as the emergency treatments in 
field first-aid and the donor evaluation for organ 
transplantation, whereas currently there is no device that can 
meet this requirement. ARFI system has better potential to be 
such a kind of device than SSI, if the 2D stiffness imaging 
based on it can be implemented. To fit this gap,, the 
time-consuming algorithms of ARFI must be substantially 
accelerated.  

Graphics processing units (GPU) has been proved as a 
good surrogate of CPU for data-intensive computing. Its 
powerful computing capability comes from the architecture 
of graphics card containing a large number of processing 
cores which can work in parallel. In recent decade, GPU has 
been widely used in medical imaging. Satisfying results have 
been obtained when it was applied in quasi-static 
elastography [3][4]. For ARFI, algorithm for small 
displacement estimation based on Loupas method has been 
migrated onto GPU [5]. However, when using this method, 
the raw radio-frequency (RF) signals should be first 
demodulated into in-phase part I and quadrature-phase part Q. 
This procedure will increase the complexity of the system, 
regardless of achieving it by hardware or by software. 
Moreover, the I/Q data are always down-sampled to reduce 
the data intensity, this brings more jitters into the results than 
using the raw RF data, especially when the signal-to-noise 
ratio (SNR) is small [6]. In addition, besides the most 
time-consuming part, tissue displacement estimation, there 
are still some other parts of ARFI algorithms that should be 
considered to be accelerated, such as the cubic spline 
interpolation and the shear wave velocity determination.  

In this study, complete ARFI algorithms were first 
implemented on CPU, and then were redesigned and 
migrated to GPU. Finally, both of them were integrated with 
our self-developed scanning-mode 2D ARFI (s2D-ARFI) 
system and their time consumptions were compared. A 
cross-correlation method based on analytic signal was used to 
assess the tissue displacements; a cyclic reduction (CR) 
method was used to calculate the cubic spline interpolation; 
and a time-of-flight (TOF) method based on Radon 
transformation was used to determine the shear wave velocity. 
Both of these methods have been confirmed to be able to 
deliver good performance on relatively noisy signals [7-9], 
and in this study they were also proved to be very suitable for 
parallel processing on GPU. The ratio of the time 
consumptions between using CPU and using GPU was 
calculated, and the quality of the stiffness images obtained on 
the tissue mimicking elastic phantoms was also compared.  

Scanning-mode 2D Acoustic Radiation Force Impulse (s2D-ARFI) 

Imaging Based on GPU Acceleration 

Congzhi Wang, IEEE Member, Bo Zeng, Weibao Qiu, IEEE Member, Hairong Zheng, IEEE Member 

978-1-4244-7929-0/14/$26.00 ©2014 IEEE 230



  

II. METHODS 

A. ARFI algorithms on CPU 

Tissue displacement estimation: This part contains two 
stages, coarse and sub-sample estimation, corresponding to 
the integral and fractional parts of the sampling periods. The 
accuracy of tissue displacement estimation mainly depends 
on the sub-sample part. Using raw RF data, the analytic signal 
based cross-correlation method can achieve an accurate 
estimation of the sub-sample part by calculating the phase 
shift of the maximal cross-correlation coefficient to the 
zero-crossing point, which is the exact position representing 
the relative displacement [7]. The accumulated displacement 
of tissue can be cumulatively summed up from these relative 
displacements of adjacent frames. 

 Cubic spline interpolation: To improve the temporal 
resolution of the tissue displacement signal and to achieve a 
more accurate estimation of the shear wave velocity, the 
signal should be first interpolated using a cubic spline method, 
which has continuous one-order and second-order derivatives, 
making the interpolated points more approximate to the 
signals in the real world. The kernel of the interpolation 
algorithm is solving the tridiagonal systems and the 
traditional lower-upper decomposition (LU) method was 
used.  

Shear wave velocity estimation: TOF is the conventional 
method for shear wave velocity estimation in ARFI. However, 
it is vulnerable to physiology motion, low SNR signal and 
spatial inhomogeneity. A more robust TOF algorithm based 
on Radon transformation was used to mitigate the influence 
of these problems. Shear wave velocity can be estimated in a 
time-location displacements matrix along the trajectory 
correspond to the maximum of Radon transformation [8]. 

B. Parallel ARFI algorithms on GPU 

NVIDIA (CA, USA) has introduced Compute Unified 
Device Architecture (CUDA) to facilitate the use of GPU and 
CUDA has become the most easily used toolkits for 
programming on GPU with fewer requirements of C 
language knowledge. To harness the full power of GPU, it is 
necessary to redesign the algorithms mentioned above to 
make them fit for working in parallel. The detail procedures  
are described as follows.  

Tissue displacement estimation: For K frames of data 
each containing N samples, K*N threads on GPU were 
assigned to accomplish the analytic signal construction based 
on Hilbert transformation. This can be easily performed using 
the fast Fourier transform (FFT) which can be facilitated with 
the built-in library in CUDA. Although theoretically this 
procedure should be performed on the small data sections 
divided for the following cross-correlation calculation, we 
found that when we did it on a long vector signal combined 
with all the K*N data points and reshaped the result back to a 
K*N matrix, the estimated displacement signals were not 
significantly influenced. It is very crucial for reducing the 
computation time because of that for FFT calculation on GPU, 
the longer the input vector, the more time can be saved.  

Spectrum-domain cross-correlation method was selected 
since it is more computing-efficient than the time-domain 
method and the FFT had already been performed at last step.  

Because of the independence of the frame-pairs, (K-1)*Q 
threads were used to accomplish the cross-correlation, where 
Q meant that the cross-correlation coefficients was over the 
lag range of [-Q/2, Q/2]. Each thread was responsible to the 
calculation for one frame-pair at one lag value. Since the 
small sections divided in the data frame were partially 
overlapped, the calculation of subsequent section included 
many unnecessary redundancies. Therefore, only the 
appended data were loaded and their sum-of-products was 
added to the part reserved from the former section using a 
first-in-first-out (FIFO) strategy. This small trick can 
dramatically reduce the time-consumption in such kinds of 
“sliding-window” cross-correlation algorithms.  

Cubic spline interpolation: Cyclic reduction (CR) method 
was selected because it can perform much more units of work 
in parallel than the LU method and is very suitable for being 
accelerated by GPU [9].The algorithm included two stages: 
first, one kernel was used to calculate the tridiagonal linear 
systems; second, another kernel was launched to compute the 
interpolation values using the results of the first kernel. Each 
linear system was solved by one block of threads whose 
dimension was half of the linear system’s size. Each thread in 
the block was responsible for calculating the coefficients of 
one equation. Each thread stored its intermediate results into 
the block’s shared memory to communicate with other 
threads during the cyclic reduction iteration, and wrote the 
final results into the global memory after the whole 
computation. Then the coefficients of the cubic splines were 
loaded into one block’s shared memory and this block was 
used to calculate the interpolation values between two known 
data points. The number of the blocks was equal to the 
number of the intervals needed to be interpolated and the 
number of the threads in one block was determined by the 
interpolation rate.  

Shear wave velocity estimation: The complexity of 
Radon transformation is proportional to the square of the 
time-dimension in the time-location matrix. The blocks with 
2D indexed threads were used and the summation along one 
trajectory was implemented in one thread, whose x, y indexes 
were corresponding to the start-time point and the end-time 
point. However, in those threads whose x, y indexes were 
equal, the workflow was totally different from the other 
threads since the slope of the trajectory cannot be determined 
as infinity. In GPU, threads are generally executed in warps 
(32 threads indexed in the same row make up a warp), with all 
threads in the warp executing the same instruction at the same 
time. However, when different threads in a warp need to do 
different things, a “warp divergence” occurs. Under this 
situation, all threads need to execute both conditional 
branches and this means a potential large loss of performance. 
To solve this issue, diagonal indexes threads were relocated 
into a same warp to avoid the conditional branches in the 
workflow. In these blocks, the thread (i, i) was relocated into 
(1, i). After the calculation, the data positions should be 
rearranged in the block’s shared memory. Then the results 
would be written into the global memory.  

C. Computation speed and image quality comparison 

Two independent programs with and without GPU 
acceleration were developed and tested on a computer with 
an eight-cores CPU (i7 2600, Intel, CA, USA) and a novel 
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GPU card (GTX Titan, NVIDIA, CA, USA), which 
composing of 2688 computing units and 6GB memory. 
CUDA 5.0 (NVIDIA, CA, USA) and Visual Studio 2010 
(Microsoft, CA, USA) were selected as the software platform 
and a self-developed ARFI imaging system was used as the 
hardware platform. A rectangular ROI was first selected on 
the B-mode image, which was combined with several rows 
and columns of small boxes like in the original single-point 
ARFI. The size of each box was about 2mm in depth and 
1.56mm in width. Then the quantitative stiffness assessments 
were performed in each box with a top-to-bottom and 
left-to-right scanning sequence. At each box position, one 
data set was collected including the echo lines of 4 different 
lateral locations and each containing 100 frames of signals 
with 512 data points in each frame. The lag range of 
cross-correlation was defined as [-40, 40]. The mean shear 
wave velocity in one box was measured and the Young’s 
modulus was calculated. After the whole scanning, the ROI 
was pseudo-colored to represent the stiffness mapping of the 
tissue, as shown in Figure 1.  

 

(a)                                     (b) 

Figure 1.  Scanning-mode 2D ARFI stiffness images of a uniform elastic 

phantom (a) and another phantom including a hard region (b) 

To compare the computation speed and the image quality 
of the two methods, the experiments were performed on two 
self-made elastic phantoms: one was uniformly soft and the 
other one was plugged by a hard “lesion” in the soft 
background. The ROI was set to be constructed by 10 * 10 
small boxes. The execution time of each step and the total 
processing on one single data set were assessed. Furthermore, 
since the GPU program used a single-precision float 
computation but CPU used a double-precision float type, the 
quality of the stiffness images they generated should be 
evaluated. For the uniform phantom, SNR was calculated to 
evaluate their measurement reliability by equation (1), where 
S denotes the mean Young’s modulus in ROI and δu is the 
standard deviation. For the “lesion” phantom, a ROI crossing 
the soft background and the hard region was selected and 
CNR (carrier-to-noise ratio) was calculated to compare their 
sensitivity by equation (2), where Sl and Sb correspond to the 
mean Young’s modulus of the “lesion” and the background, 
and δl and δb indicate their standard variance, respectively. 
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III. RESULTS 

Table 1 shows the execution time of the two programs 
running on CPU and GPU, dealing with one same data set. 
Each step of the algorithms was included. For the most 
time-consuming parts such as cross-correlation, filtering, 
Radon transformation and cubic spline interpolation, large 
acceleration ratio has been confirmed between the two 
programs. The total time listed in the table also includes some 
additional time consumption when connecting the 
multi-algorithms, thus it is a little larger than the sum of the 
above steps.  

TABLE I  COMPARISON RESULTS BETWEEN CPU AND GPU 

 

Steps of the 

algorithm 

 Comparison results 

Execution Time 

on CPU (ms) 

Execution Time 

on GPU (ms) 

Acceleration 

ratio 

Data transfer 0 14.0  

Cross-correlation 2120.0 50.0 42.4 

Filtering 1036.0 4.0 259.0 

Radon 

transformation 

1550.0 13.2 117.4 

Cubic spline 

interpolation 

1055.0 0.6 1758.3 

Total time 5763.0 82.2 70.1 

 

 

(a) 

 

(b) 

Figure 2.  Comparison of SNRs and CNRs of the stiffness images 

obtained using GPU and CPU.  

Figure 2 shows the SNRs and CNRs of the stiffness 
images when emitting focused ultrasound with different 
length pulses to generate different amplitude displacements. 
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The SNRs and CNRs of the images obtained using GPU are 
well-fitted with those obtained using CPU. This proved that 
little quality loss of the stiffness images occurred when the 
algorithms were accelerated with GPU. 

Finally, a quasi-real-time s2D ARFI imaging system was 
implemented by the help of GPU acceleration. For a ROI 
constructed by 100 measurement boxes and 20mm*15mm 
size, the total imaging time including signal processing and 
displaying is about 25 to 30 seconds. 

IV. DISCUSSION 

High ratio of the time consumptions between the 
algorithms using CPU and using GPU has been verified 
according to our results. In the study of Rosenweig et al. on 
accelerating ARFI’s displacement estimation algorithm by 
GPU, the data sets had 52 total push locations, 80 track pulses 
per push, and 493 I and Q samples per track. Thus the data set 
they tested is about 10 times larger than ours. The total time 
their computation cost was 267ms. Although our result is 
82.2ms for 4 tracking locations, 100 frames per location, and 
512 data points per frame, our algorithm included more steps 
than theirs, such as the filtering and the Radon transformation. 
The data transfer time from the underlying hardware to the 
PC was neglected since this consumption is the same for both 
CPU and GPU algorithms. 

For the cross-correlation part, our method cost 50ms in 
comparison to their time consumption of 61ms on ten times 
larger data set. However, Loupas method they used was 
developed based on the Doppler phase shift estimation and 
only needs calculating the sum-of-products once for one 
section of signals. On the contrary, the analytic based method 
we used calculates all the cross-correlation coefficients of 
one data section in a large lag range, [-40, 40], to search the 
maximal value. Therefore, the calculation amount of our 
method is about 80 times larger than theirs, and as a 
compensation, the tracking range of the tissue displacements 
is also 80 times larger. Loupas method not only increases the 
system’s complexity since it needs I/Q decomposition, but 
also induces incorrect estimation due to its demodulation and 
down-sampling process, especially when the SNR of raw RF 
signals is low. In addition, Loupas method will also make 
mistakes when the phase wrapping occurs, like those 
generally observed in Doppler blood flow signals. Another 
reason for the poor acceleration ratio of cross-correlation 
algorithm is that it contains much more memory accessing 
operations than the other steps. Although the memory 
accesses has been much reduced by the utilization of FIFO 
strategy, uncoalesced memory accesses still exist, which 
reduce the acceleration efficiency. 

Comparing to the previous study, the best improvement 
of our algorithm occurs at the cubic spline interpolation part. 
Rosenweig et al. adopted the method of dividing long vector 
into several overlapped subsets to implement parallel 
computing for the interpolation. However, their time cost is 
46ms versus our time cost is only 0.6ms. CR method assures 
the maximum parallelism of solving tridiagonal linear 
systems by assigning two nearby equations to one thread. 
Although in our study CR method was limited by the 
dimension of the blocks and the consequential additional data 
communication, it still performs much better than the other 

traditional methods. We also tried the LU decomposition 
method and the time cost is 45ms. This is because the CR 
method needs less iterative steps than the LU method.  

For the Radon transformation part, our method realized a 
high acceleration ratio of 117.4, but unfortunately there is no 
previous results can be compared to. The good parallelism of 
our method is achieved by assigning each thread to the 
computation of one trajectory to avoid synchronization time 
between threads, and also by the relocation of the diagonal 
indexes threads to avoid warp divergence.  

Although the imaging speed of our s2D-ARFI system is 
still much slower than SSI, which can generate one stiffness 
image with 30ms [10], our system can provide an additional 
choice for quantitatively imaging the tissue stiffness. 
Furthermore, since ARFI has much more simple hardware 
architecture than SSI, it is easier to be miniaturized for some 
special clinical applications such as the emergency treatments 
in field first-aid and the donor evaluation for organ 
transplantation. The further improvement on the imaging 
speed of ARFI and the miniaturization of s2D-ARFI system 
will be attempted in the future studies.  
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