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Abstract — Quantitatively assessing the tissue stiffness with 

acoustic radiation force impulse (ARFI) method has proved its 

worth in clinical trials. Much attention has been focused on the 

research of the displacement estimation algorithm in ARFI. 

However, the subsequent shear wave speed estimation part can 

also affect the accuracy and reliability of the results. In this 

study, several algorithms for shear wave speed estimation were 

designed and compared using the ultrasound radio-frequency 

data collected from a self-developed ARFI system. These RT 

based algorithms were classified as two types: the 

transformation being performed on the time-location 

displacement matrix or on the time-depth displacement matrix. 

The algorithms in Type I attempt to find the best trajectory of 

the shear wave propagation in one depth, while those in Type II 

try to directly find the time points when the wavefront passed 

each lateral location in the whole depth range. Experiments 

were performed on soft tissue mimicking phantom and ex vivo 

pork tissue sample. The reliability of repeated measurements 

and the computation time of these algorithms were compared 

to find the most stable and time-saving one for ARFI. The 

results can give us inspiration on how to design a better 

algorithm for shear wave speed estimation and help to improve 

the measurement reliability of ARFI. 

I. INTRODUCTION 

Acoustic radiation force impulse (ARFI) is a quantitative 
method for tissue stiffness assessment [1]. In ARFI, acoustic 
radiation force is generated by a focused ultrasound beam and 
induces localized small displacements in the soft tissue 
(generally the amplitude is only 1~10 µm) [2]. Subsequently 
shear wave arises and propagates away from this vibration 
source. Its propagation can be tracked by a high frame rate 
ultrasound scanner. Then the shear wave speed is evaluated in 
the region of interest (ROI) and converted to the Young’s 
modulus [3]. ARFI has been used in the commercial systems 
developed by Siemens and Philips. It has been validated on 
many diseases and organs like liver, breast, thyroid, pancreas, 
etc., and has proved its worth in clinical trials [4].   

Previous studies on ARFI algorithms mainly focused on 
the displacement estimation part. The key issue is to reduce 
the estimation errors caused by the decorrelation of the 
ultrasound radio-frequency (RF) signals and to speed up the 
calculation simultaneously [5-9]. However, the influence of 
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these errors can be also compensated during the subsequent 
shear wave speed estimation part. The direct method for this 
is to solve the inverse problem of Helmholtz equation, which 
requires computing the second-order derivatives of the 
displacement signals to recovery the shear wave speed 
[10-13]. This method has been successfully applied in 
magnetic resonance elastography (MRE), but can only 
achieve limited success in ultrasound elastography because of 
the inherent noisy nature of the RF echo signals [14-16]. 
Another simple algorithm generally used in shear wave 
estimation is the time-of-flight (TOF) method, in which the 
shear wave propagation is characterized as a function of time. 
The travelling shear wave can be tracked at different lateral 
locations by cross-correlation or time-to-peak (TTP) methods 
and the shear wave speed can be calculated by dividing the 
distance by the travel time [17-21]. However, it also has 
limitations that some factors, such as physiological motion, 
low signal-to-noise ratio (SNR) displacement signals and 
spatial inhomogeneities in tissue, can all negatively affect the 
accuracy of the estimated shear wave speed, especially on the 
in vivo patients’ data.  

In a previous study, Rouze et al. used a RT (RT) based 
TOF method to improve the robustness of shear wave speed 
estimation in ARFI [22]. The displacement signals at one 
depth and four lateral tracking locations were formed as a 
time-location matrix. RT summed up the data along a 
straight-line trajectory in the matrix. The trajectory 
corresponding to the maximum summation value was the best 
approximation of the time sequence when the wavefront 
passed the four lateral locations.  However, their method 
didn’t provide a solution that how to determine the depth 
where the displacement signals would be selected. Generally 
the focal depth would be selected, but if some errors 
accidentally occurred on one of these four displacement 
signals, the estimated shear wave speed might be totally 
wrong. And if multiple depths were selected, how to select 
them and how to make a tradeoff between reliability and 
computation intensity would be another problem.  

The aim of this study is to compare the results of several 
RT based algorithms of shear wave speed estimation using 
the real RF data collected from an self-developed ARFI 
system. The results can give us inspiration on how to design a 
better algorithm for shear wave speed estimation and help to 
improve the measurement reliability of ARFI. 

II. METHODS 

The algorithms we used were classified into two types: 
one type was that the RT being performed on time-location 
displacement matrix, similar to that used in Rouze’s study; 
another type was that the RT being performed on time-depth 
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displacement matrix, which attempted to directly find the 
time points when the wavefront passed each lateral location. 
Here they are introduced separately as follows. 

A. Type I: RT on time-location displacement matrix 

In these algorithms, displacement signals are expressed as 
a matrix of time t and lateral location n (n=1, 2, 3, 4). The 
distance between two adjacent locations is x. To improve the 
temporal resolution, a 20 times cubic spline interpolation was 
first performed on each row of data in the time direction. In 
this matrix, we can suppose a solution space of linear 
trajectories extend from a starting position (1, tstart) to an 
ending position (4, tend), where tstart<tend, and the relationship 
between distance and time can express as  

    (           )   

where shear wave speed v can be calculated. Theoretically for 
each four displacement signals obtained at the same depth, 
we can get one shear wave speed value.  

Considering the selected depth for the above calculation, 
Type I algorithms tested in our study can be sorted into three 
cases: (1) at a single focal depth, (2) at several artificially 
selected depths and (3) at all the depths. They are described in 
detail in the following sections. 

(1) After tissue displacement estimation, four time-depth 
displacement matrixes were obtained, each corresponding to 
one lateral location. The first 20 data at each depth in the 
matrix of the nearest location were summed up in the time 
direction. The depth where the summation was the maximal 
was considered as the focal depth. Then the shear wave speed 
at this depth was calculated using the RT method described 
above. 

(2) Artificially defined five depths with an uniform 
distribution in the ROI and calculated shear wave speed at 
each depth. Then the median of the five speed values was 
used as the final result. 

(3) Averaged all the data at the same time point in the four 
time-depth displacement matrixes, and used the results to 
form a time-location displacement matrix for the following 
shear wave speed calculation based on RT. 

B. Type II: RT on time-depth displacement matrix 

If the wavefront’s time position in the time-depth 
displacement matrix of four lateral locations can be directly 
determined, the shear wave propagation time from one 
location to the other ones can be easily calculated, and then 
the shear wave speed can be readily estimated. The 
algorithms based on this conception are described in detail in 
the following sections. 

(1) RT can also be used to obtain the time position of the 
wavefront in the time-depth displacement matrix. The 
trajectory corresponding to the maximal summation value is 
the best approximation of the wavefront. Using the raw 
displacement data, a coarse position of wavefront was first 
estimated. Then 20 times cubic spline interpolation was 
performed in a scope of 10 frames around the time position of 
wavefront for increasing temporal resolution. At last, more 
precise wavefront time positions were determined using RT 
again, and the shear wave speed was calculated according to 
these positions.  

(2) Moreover, we proposed a threshold concept into the 
Type II(1) algorithm to determine the precise time positions 
of the wavefronts after the interpolation step. This can reduce 
the negative influence of the large abnormal values in the 
displacement signals. Within the scope of interpolation, all 
the data were summed up in the column (depth) direction and 
a row (time) vector of summation was obtained. The value 
equal to 75% of the vector’s maximum was defined as the 
threshold and a time position range where the summation 
value was greater than this threshold was delineated. The 
middle point of this range was considered as the precise time 
position of the wavefront. At last, as the same as the Type II(1) 
algorithm, shear wave speed values between each two 
adjacent lateral locations were calculated and averaged as the 
final result. 

Besides the above two types, we also tried to combined 
them together. First, the coarse time position of the wavefront 
at each lateral location was determined using RT. Then the 
depth corresponding to the maximal displacement at this time 
position was found and thus four different depths were 
selected. At last, the mean value of the four depth values was 
selected as the fifth depth and the displacement signals at 
these five depths were used to calculate the shear wave speed 
as in the type I(2) algorithm.  

C. Reliability and computation speed comparison 

Stiffness measurements were performed using a 
self-developed ARFI system with a self-made 3.5MHz linear 
array transducer, which was used to both generate and track 
the shear wave propagation. Experiments were conducted on 
self-made gelatin phantom and fresh ex vivo pork tissue 
sample. The ROI was identified on the b-mode image with a 
fixed size of 2×1.5 mm. One data set of RF signals was 
collected in one ROI with 4 tracking locations, 100 frames 
per location, and 512 data points per frame. The tissue 
displacement signals were calculated by an analytic signal 
based cross-correlation method and were used as the input of 
the following algorithm tests.  

Computation time of each algorithm on one data set was 
first evaluated using Matlab (The Mathworks, Natick, MA, 
USA) with its stopwatch timer function. The function can 
records the internal time at execution of the tic command and 
display the elapsed time with the toc command. In the 
experiment on gelatin phantom, shear wave speeds at eight 
sites were measured repeatedly, with the ROI moved 
gradually from a shallow region (20 mm) to a deeper region 
(80mm). At each site measurement was repeated for 50 times. 
Then the shear wave speeds were estimated using the six 
algorithms mentioned above, and the means and standard 
deviation (SD) of the results were calculated. Finally, the 
coefficient of variation (CV) defined as the ratio of the SD to 
the mean was determined to evaluate the reliability of these 
algorithms. In the experiment on ex vivo pork tissue, the 
depths of the measurement sites were restricted by the 
thickness of the sample and were set to be 2.5cm, 3cm, 3.5cm 
and 4cm. Similarly, measurement was repeated for 50 times 
at each site and the mean, SD and CVs were also calculated. 

III. RESULTS 

The computation time of the six algorithms is arranged in 
the order from fast to slow, namely: Type II(2), Type I(3), 
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Type I(1), Type II(1), Combination and Type I(2), and the 
time consumption on one data set are 0.53s, 0.60s, 0.61s, 
2.80s, 2.93s and 3.01s, respectively. The first three methods 
are much faster than the other three.  

The stiffness of the phantom and the pork tissue is in the 
same range (the reasonable shear wave speed values are both 
between 2.5m/s to 3m/s), therefore the CVs obtained on them 
are comparable. The CVs of all algorithms obtained on 
phantom are plotted in Figure 1. Trends can be found that the 
CVs of all algorithms increase at the shallower and deeper 
measurement positions, and almost all algorithms are most 
reliable at the middle depth positions (from 4 to 6 cm). 

 

Figure 1. The coefficient of variation (CV) of the shear wave speed 

estimated by the six algorithms on gelatin phantom. 

The CVs of all algorithms obtained on ex vivo pork tissue 
sample are plotted in Figure 2 and their values are much 
larger than those obtained on phantom. However, similar to 
the results on phantom, CVs at the deepest measurement 
position (4cm) are larger than those at the other depths (from 
2.5cm to 3.5cm). 

 

Figure 2. The coefficient of variation (CV) of the shear wave speed 
estimated by the six algorithms on ex vivo pork tissue sample. 

IV. DISCUSSION 

It has been presented that CV of every algorithm rises at 

the shallower and deeper positions on both the tissue 

mimicking phantom and the ex vivo pork tissue sample. This 

phenomenon also appeared in the results of a commercial 

ultrasound elastography scanner, Aixplorer (SuperSonic 

Imagine, Aix-en-Provence, France), which can perform 

quantitative stiffness measurements with similar methods 

based on acoustic radiation force emission and shear wave 

speed estimation [24]. It has been proved that this is mainly 

because of the lower SNR of the displacement signals at 

these depths. Moreover, the six algorithms have shown their 

different sensitivities to the changing SNR, especially on the 

pork tissue sample. CVs obtained on the pork tissue are 

much larger than those obtained on the phantom at the 

similar depths. This may be explained by that the elastic 

property of the phantom are much more uniform than the 

pork tissue and the SNR of the displacement signals is thus 

also much higher. Another reason may be the special 

characteristics of the RF echo signals caused by the complex 

components and structures of the biological tissue.  

The CVs of different algorithms obtained on the phantom 

are almost similar at the same depth. For Type I algorithms, 

the SNR of I(2) and I(3) are lower than I(1), especially on the 

pork tissue sample. This proves that I(2) and I(3) are more 

effective for improving the reliability. However, the 

robustness of I(2) and I(3) are different when there are large 

abnormal values in the displacement signals. In algorithm 

I(2), the interpolations and RTs are performed at five depths 

first, then the median speed value is selected from the five 

results. Therefore its computation amount is much larger 

than I(1) and I(3). But since the median result will not be 

easily affected by the abnormal values, the result will be 

more robust. This can be demonstrated by the CVs obtained 

on the port tissue at 4 cm depth, which corresponds to the 

lowest SNR of the displacement signals. And for algorithm 

I(3), the displacement signals are first averaged, then only 

one interpolation and RT needs to be performed. Thus the 

influence of large abnormal values should be much smaller 

than I(1) but still exists if the abnormal values are extremely 

large. Nonetheless, the computation amount of I(3) is small 

and only as about 1/5 as that of I(2).  

For Type II algorithms, II(1) calculates twice RTs and 

interpolations, thus its time consumption is less than I(2) but 

more than I(3). However, its performance is bad on the pork 

tissue sample comparing to the other algorithms. The 

algorithm II(2) also only performs one interpolation and one 

RT, just like I(3), which makes it the fastest one among the 6 

algorithms. And comparing to II(1), using a threshold 

concept in II(2) can effectively reduce the negative influence 

caused by the large abnormal values and irregular shape of 

the wavefronts in the displacement signals, which happened 

more in the practical data obtained on biological tissue. The 

good noise immunity of II(2) can be proved by that its CV is 

the lowest one at the deepest depth on the pork tissue.  

And finally, we proposed the combination method of 

Type I and Type II, trying to use the information of 

wavefront’s time position to determine the depth where the 

data would be used to calculate the shear wave speed. 

However, the combination algorithm didn’t provide us an 

enough satisfied result. Both its computation time and 

reliability are poorer than the other algorithms.  

The results obtained on the pork tissue are considered 

more meaningful than those obtained on the phantom, as the 
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pork tissue is more similar as that of human being. The 

reliability of the simplest algorithm I(1) relies on the fortune 

that not selecting a depth containing large abnormal values. 

It has been shown that it is not stable enough when the depth 

increases. When the measurement depth is shallow (from 

2.5cm to 3.5cm on the pork tissue), algorithms I(2) and I(3) 

are better than the others since the averaging and taking 

median steps of them are more effective when the number 

and amplitude of the abnormal values are relatively small. 

However, when the displacement signals become more noisy 

at the deeper depth (4cm on the pork tissue), algorithm II(2) 

shows a better performance since the threshold concept can 

successfully reduce the negative influence caused by the 

large abnormal values and irregular shape of the wavefronts 

in the displacement signals. According to the results, we 

recommend that using the algorithm I(2) or I(3) at the 

relatively shallower depths, and using the algorithm II(2) at 

the deeper depths. The detailed conditions for switching the 

algorithms should be further studied and determined.  

There are still some limitations to our study. One is the 

limited number of measurement depths, especially on the ex 

vivo pork tissue. Despite this, the reason of the appearance of 

the large abnormal values in the displacement signals should 

be further affirmed and classified. The more characteristic 

parameters we extract from these abnormal samples, the 

more opportunities we have to further improve the 

algorithms of shear wave speed estimation and the reliability 

of the repeated measurements in ARFI.  
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