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Abstract—Diffuse Optical Tomography (DOT) has become an 

emerging non-invasive technology, and has been widely used in 

clinical diagnosis. Functional near-infrared (FNIR) is one of the 

important applications of DOT. However, FNIR is used to 

reconstruct two-dimensional (2D) images for the sake of good 

spatial and temporal resolution. In this paper we propose a 

multiple-input and multiple-output (MIMO) based data 

extraction algorithm method in order to increase the spatial and 

temporal resolution. The non-linear iterative method is used to 

reconstruct better resolution images layer by layer. In terms of 

theory, the simulation results and original images are nearly 

identical. The proposed reconstruction method performs good 

spatial resolution, and has a depth resolutions capacity of three 

layers. 
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I. INTRODUCTION 

In recent years, Diffuse Optical Tomography (DOT) has 

represented a fast growing technology, and has currently been 

developed into a mature technology. DOT is a low-cost and 

sensitive approach to reconstruct the image of a high 

scattering medium such as tissue. Due to the weak absorption 

at the near-infrared wavelengths of oxygenated hemoglobin 

(HbO) and deoxygenated hemoglobin (Hb) [2] [3], DOT uses 

near-infrared spectroscopy (NIRS) to monitor the local 

changes of the HbO and Hb concentration variations. By 

using the Modified Beer-Lambert Law (MBLL), changes in 

absorption values in the spectrum of NIRS permits us to find 

out concentration variations of Hb and HbO. The NIRS 

produces results by analyzing the data measured from the 

source-detector pair. The spatial resolution is decided via 

distance and the number of source-detector pairs. Detectors 

can improve the spatial resolution by receiving alternatively 

optical intensity from different sources. One disadvantage of 

NIRS is that it is not easy to detect depth information because 
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photons might be absorbed by tissue on their diffusion path, 

so we should have another method to overcome this problem. 
The proposed approach helps us to reconstruct the desired 

image by combining information from different 
source-detector pairs. This algorithm is based on a hexagonal 
source and detector array structure with three layers of depth. 
One of the advantages of this algorithm is to increase the 
spatial resolution so we can apply a non-linear iterative 
approach to make convergence easier. Another advantage is 
that this algorithm can reconstruct three layers, which is its 
main difference with conventional reconstruction. 

 

Figure 1.  The 3D hexagonal Source-Detector array structure 

 

Figure 2.  The top view Figure 3.  The side view 

II. THE ALGORITHM CONCEPT 

Fig. 1 is a perspective view that shows the hexagonal 

Source-Detector (SD) array structure with three layers. The 

symbol in the center of each hexagon represents two parts, 

one is the source and the other is the detector. The source and 

detector at the same location are not excited simultaneously. 

Fig. 2 is the top view of SD array, and this array is 

symmetrical with respect to the yellow-dashed lines. Fig. 3 is 

the cross section view of the hexagonal structure, it shows 

that different distances between sources/detectors cause 

different diffusion depth. This research uses the non-linear 

iterative method which is a mathematical procedure to 

improve approximate solutions. An iterative method uses 

repeated calculations to make the error lower than the given 

initial value and increase the accuracy of the experimental 

results. 
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A. Photons propagation 

When photons propagate from the light source to the light 
detector, the optical density can be received by the detector. It 
can be described by the modified Beer-Lambert Law: 

       ∑ {   ∏ [   (       )] }     (  )

Id is the optical intensity which is received by the detector 

after propagation. Ii is the intensity of the incident light. Rm is 

the possibility of the light source and the receiver with 

diffusing paths of different depth. є is the extinction 

coefficient of the molecules (cm-1mM-1). Cn is the 

concentration of the molecules (mM). U is the size of each 

reconstructed grid which is defined as 0.667 (cm) in this 

system. Pn is a differential path length factor (DPF), which is 

the ratio of real length of propagation to U (DPF=1/2√
(3μs/μa)) [4], and g is the correction factor of the geometry. 

Based on the diffusion theory, the absorption coefficient (μa) 

can be calculated at any wavelength; this coefficient is 

assumed to be linearly independent for all the relevant 

molecules in the diffusing path, each having an extinction 

coefficient є, leading to: 

     ∑       
 
      ( ) 

According to Fig. 3, there are three different lengths of SD 

distance, which can be divided into three forward equations 

by the Beer Lambert Law. These three equations are named 

for the different length of SD: the first is “Equation a (Ea)” 

and the SD length equals 2U; the second is “Equation b (Eb)” 

and the SD length equals 4U; and the third is “Equation c (Ec)” 

and the SD length equals 6U. 

 
Figure 4.  The cross sectional view schematic diagram of three forward 

equation. 

For the Beer Lambert Law in (1), replacing some variables 

to simplify the equation with substitute variable can be shown 

as: 

 {

    
  

  

      (     )

        (  )

  

Oeq is the ratio of light intensity of source and detector. An 

is the absorption factor of tissue for each unit grid. Geq is the 

measurement geometry of the detector. After replacing the 

variables in (1), the Beer Lambert Law becomes simpler and 

can be shown as: 

                       ∑ {   ∏   
  

 }      

B. Variable Definition 

Table 1 shows the different kinds of parameters with 
description, which include the physical parameters 

(absorption factor, intensity factor) and weighting coefficients 
(spatially, geometrically, algebra). 

TABLE I.  THE DESCRIPTION OF EACH VARIABLE 

Variable name Description 

A(front index),(depth index) Absorption factor of tissue for a 

unit grid 

P(equation)(front 

index),(depth index),(forward 

term) 

A differential path-length factor 

(DFP) 

R(equation)(forward term) the possibility of the light source 

and the receiver with diffusing 

path of different depth 

E(equation)(front 

index),(forward term) 

The information of  the photons 

diffusion  process 

O(equation)(front index) The light intensity ratio of  the 

source and detector 

G(equation) The measurement geometry of 

the detector 

D(equation)(inverse 

term),(angle) 

Reconstructed information for 

each grid 

F(equation)(inverse term) Ratio factor of the different light 

source  in the diffusion process 

passes through the grid  

H(equation)(previous term) Weighting coefficient of the 

convergence 

 

Figure 5.  The cross sectional of the paths of each other three equations. 

C. Formula Derivation 

Fig. 5 shows the different light propagation paths 

according to different distances between sources and 

detectors. During the simulation, each source-detector pair is 

excited at different times in order to avoid crosstalk between 

two neighboring sources, so we ignore this phenomenon in 

this work. After simplifying the Beer Lambert Law equation 

by variable substitution, the three forward equations and 

inverse solutions can be written as the following: 

 Top Layer 

The forward equation for the Top layer is called “equation 

a”, which crosses two units (U) in the front direction and 

consists of one forward term, and is represented by the solid 

green line (Ea (I, 1)) in Fig. 5. The Oai represents the ratio of 

output and input intensity from the equation “a” at the 

location I, and the forward equation formula is  

 {
          

             
         

              
 

The term Ea is an intermediate variable. The inverse 

solution of equation “a” is 
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 

The formula of A(i,j) and Da(1,angle) have six values to 

represent the six different directions. Da(1,angle) is the value 

of reconstructed information. In each iteration process, the 

final value of Da has average the six values in different 

directions. Fa is a weighting coefficient. 

The new value of Da which is obtained from (6) will 

substitute into (7), the convergence equation. The equation is 

related to four previous results and the weighting coefficient 

Ha. The iteration constantly operated to correspond with the 

convergence condition (|Ba(t)-Ba(t-1)|<0.0001). If the 

computation corresponds to convergence condition, the value 

is nearly stable. 

          ( )             (   )      

                                           (   )       (   ) 

 Middle Layer 

The forward equation for Middle layer is called “equation 

b” which crosses four units (U) in the front direction and 

consists of two forward terms and is represented by the solid 

red line (Eb(i,1), Eb(i,2)) in Fig. 5. The Obi represents the 

ratio of output and input intensity from equation “b” at the 

location i, and the forward equation formula is:  
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The inverse solution of equation “b” is given as 


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When calculating the inverse solution of the second term, 

the location i can be replaced by the location (i-1) because the 

forward equation at location (i-1) is similar to location i. 

Equation (9) can be rewritten as following:  
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   (10) 

The formula of A(i,j) has twelve values to represent six 

different directions for two inverse term formulas in (9) and 

(10). Db is the value of reconstruction information. In each 

iteration process, the final value of Db has the average six 

Db(1,angle) and Db(2,angle) in (11). Fb is a weighting 

coefficient which is determined by the 

Monte-Carlo-forward-model to calculate the crossing 

probability to the corresponding inverse term at A(i,j): 
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 

Equation (12), the convergence equation, is related to the 

four previous results. The iteration constantly operates to 

correspond with the convergence condition 

(|Bb(t)-Bb(t-1)|<0.0001). If the computation corresponds to 

the convergence condition, the value is nearly stable. 

          ( )             (   )      

                                           (   )       (   ) 

 Bottom Layer 

The forward equation for Bottom layer is called “equation 

c” which crosses six units (6U) in the front direction and 

consists of three forward terms and  is represented by the solid 

blue line (Ec(i,1), Ec(i,2), Ec(i,3)) in Fig. 5. The Oci 

represents the ratio of output and input intensity from 

equation “c” at location I, and the forward equation formula 

is. 
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The Inverse solution of equation “c” is given as 

{

    ( c        c        c3     ) c
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When calculating the inverse solution of second term, the 

location i can be replaced by the location (i-1) because the 

forward equation at location (i-1) is similar to the location i. 

Equation (14) can be rewritten as following:  

 {
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 

Equation (17), the convergence equation, is related to four 

previous results. The iteration constantly operates to 

correspond with the convergence condition 

(|Bc(t)-Bc(t-1)|<0.0001). If the computation corresponds to 

the convergence condition, the value is nearly stable. 

          ( )             (   )      

                                           (   )       (   ) 



Figure 6.  The image reconstruction process 

D. Reconstruction Process 

Fig. 6 is the reconstruction flow; the reconstruction order is 

layer by layer, from the top layer to the bottom layer. At first, 

when the initial condition is given, the reconstruction 

computes the inverse equation and inverse term. Then the 

reconstruction judges whether the convergence equation will 

correspond or not. Once the convergence condition 

corresponds, it will carry out the next layer reconstruction. 

After the layer completes the reconstruction, it will be 

considered as the known value to help the reconstruction of 

the next layer. 

III. SIMULATION RESULTS 

 
Figure 7.  Simulation Results 

In the simulation the wavelength is set at 730 nm. The 

absorption coefficient of the background is 0.12 cm
-1

. The 

absorption coefficient of the abnormal area is 0.31 cm
-1

, and 

the scattering coefficient is 15 cm
-1

. The condition of the first 

iteration is set that the space is homogeneous in that the 

absorption coefficient of the background is constant. In the 

picture, the normal tissue is assumed to be light blue; the 

orange is the abnormal tissue. The upper three figures show 

the assumed tissue with different layers and the lower three 

figures represent the reconstructed image with different 

layers. According to the simulation results, the reconstruction 

algorithm can parse the two layers clearly. With the increase 

of the number of the layers, the cumulative error will be too 

large to reconstruct the third layer clearly, so its simulation 

result is not as good as the other layers. But it still has a 

reference value for the shallow foreign body diagnosis. 

IV. CONCLUSIONS 

The hexagonal structure provides more associated 

detection region in symmetries. The non-linear algorithm is 

developed by observing the phenomenon of light propagation 

from previous Monte Carlo based forward-model iteration 

techniques. In this paper, the proposed approach incorporates 

a multiple-input multiple-output (MIMO) based data 

extraction algorithm for a hexagonal source and detector 

array structure, to reconstruct the images of three layers. We 

applied a non-linear iterative approach to make convergence 

easier. The simulation results are nearly identical to the 

original images. It can parse the two layers clearly. Although 

the operation of the third layer is not as good as the other 

layers. The algorithm not only enhances the reconstruction 

accuracy by increasing the scanning amount of each grid but 

also achieves multiple layers. 
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