
  

  

Abstract—Automated processing of digital histopathology 

slides has the potential to streamline patient care and provide 

new tools for cancer classification and grading. Before 

automatic analysis is possible, quality control procedures are 

applied to ensure that each image can be read consistently. One 

important quality control step is color normalization of the 

slide image, which adjusts for color variances (batch-effects) 

caused by differences in stain preparation and image 

acquisition equipment. Color batch-effects affect color-based 

features and reduce the performance of supervised color 

segmentation algorithms on images acquired separately. To 

identify an optimal normalization technique for 

histopathological color segmentation applications, five color 

normalization algorithms were compared in this study using 

204 images from four image batches. Among the normalization 

methods, two global color normalization methods normalized 

colors from all stain simultaneously and three stain color 

normalization methods normalized colors from individual 

stains extracted using color deconvolution. Stain color 

normalization methods performed significantly better than 

global color normalization methods in 11 of 12 cross-batch 

experiments (p<0.05). Specifically, the stain color 

normalization method using k-means clustering was found to 

be the best choice because of high stain segmentation accuracy 

and low computational complexity. 

I. INTRODUCTION 

Histopathology is an integral part of the detection, 
monitoring, and research of cancer. Digital histopathology 
slides, also known as whole-slide images (WSIs), are a 
modern, high-resolution tool to store the information from a 
tissue sample fixed on a glass slide for later analysis. WSIs 
have uses in training, healthcare record management, and 
telemedicine [1]. The availability of large, public banks of 
WSIs such as the Cancer Genome Atlas (TCGA) has created 
a growing area of research devoted to the automated analysis 
of these images [2]. Reliable, accurate, and automatic 
processing of WSIs has the potential to cut costs, improve 
patient outcomes, and take modern pathology into 
environments not previously possible [3]. 

Before useful automated processing, digital 
histopathology slides must undergo a number of quality 
control steps. These quality control steps ensure that no 
artifacts or technical variations, created during image 
acquisition, affect the biological data and the performance of 
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image analysis and machine learning algorithms. Due to the 
great variability that exists between slides processed using 
different equipment or reagents, color normalization, which 
will normalize colors across batches, is a vital quality control 
step in the slide analysis process [4]. 

Tissue samples are stained to highlight different cellular 
structures. For instance, in the most common slide staining 
for histopathology—H&E or hematoxylin and eosin—
hematoxylin stains nuclear structures purple or blue, and 
eosin stains cytoplasmic structures pink. Analysis of WSIs 
often requires that the contributions from these two stains be 
extracted and considered separately. For example, nuclear 
segmentation algorithms may begin by identifying high 
concentrations of hematoxylin. The shape and texture 
features of the isolated stain channels have been shown to 
have diagnostic value in classification problems. Accurate 
normalization is thus a necessary first step for extracting any 
features based on color, texture, or stain segmentation. In this 
paper, the role of color normalization methods in a 
supervised stain segmentation pipeline is studied. 

Researchers have previously studied color normalization 
methods for histopathological images [4-6]. Among the 
published research, there are two categories of methods: 
global color normalization that normalizes colors of all pixels 
irrespective of their stain and stain color normalization that 
separates stains and then normalizes each stain individually. 
The latter category would be ideal if the stains could be 
separated accurately. However, unsupervised stain 
segmentation of histopathological images is often not 
straightforward. Kothari et al. proposed two global color 
normalization methods that normalize images using quantile 
normalization of all pixels in the RGB color space and the 
quantile normalization of the unique color map [4]. Magee et 
al. proposed a stain color normalization method that roughly 
separates stains using color deconvolution and clustering and 
then normalizes each stain individually using Reinhard’s 
method [6, 7]. In their study, Magee et al. used a variational 
Bayesian Gaussian mixture model to cluster the areas where 
each stain is present in deconvolved images and compared 
original and normalized colors after normalization rather than 
comparing segmentation performance. However, variational 
Bayesian methods are computationally complex. Thus, in this 
study, two additional stain normalization procedures are 
developed that use the less complex k-means clustering and 
expectation-maximization methods to identify stain classes, 
rather than variational Bayesian methods. 

In summary, a quantitative comparison of the impact of 
five normalization algorithms, two global normalization and 
three stain color normalization methods, on color 
segmentation performance is presented in this paper.  
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II. METHODS 

A. Data 

Manually curated portions of digital histopathology slides 
from four separately acquired image batches are used in this 
study. Two image batches/datasets, ovarian serious 
adenocarcinoma (OV) and glioblastoma multiforme (GBM), 
are from The Cancer Genome Atlas (TCGA). Images in these 
datasets are cropped sections of 1024x1024 pixels. The other 
two datasets, renal cell carcinoma (RCC1 & RCC2), were 
acquired at Emory University. Images in renal datasets are 
cropped sections of 1600x1200 pixels. In total, 204 images 
are considered, out of which 50 were derived from OV 
samples, 52 from GBM, 55 from RCC1, and 47 from RCC2. 

Ground truth segmentation for all images is obtained 
using an interactive system, where an experienced user 
selected sample pixels belonging to one of the four classes: 
hematoxylin, eosin, erythrocyte, and stain-free regions. All 
the image pixels were grouped into one of the four classes 
based on their Euclidian distance to selected pixels. These 
ground truth labels are used for training segmentation 
classifiers and evaluating segmentation performance. 

B. Color Normalization Algorithms 

Color normalization methods affect the value of color 
features and performance of color segmentation algorithms. 
In this paper, performance of color segmentation using five 
candidate normalization algorithms (as outlined in Fig. 1) is 
studied. Previous work published color segmentation results 
using two global color normalization methods: all pixel and 
color map normalization, and as such, it is used here as a 
control [4]. The three other methods are derived from the 
color normalization methods published in [6, 7]. These 
methods use stain deconvolution as a first step, splitting the 
sample image into separate channels for hematoxylin and 
eosin staining. Three different clustering algorithms are then 
applied to segment those channels into stain is present / is not 
present regions. After normalizing different stains in a 
sample image to stains in a reference image, sample image 
stains are convolved to produce a normalized sample image. 

1)  Global Color Normalization 

All-pixel quantile normalization performs simple quantile 
normalization of the red (R), green (G), and blue (B) color 
channel intensity distributions from the sample image to a 
reference image [4]. In quantile normalization, the largest 
value from the sample is replaced by the largest value from 

the reference, the second largest sample value by the second 
largest reference value, etc. The color distributions of the 
quantile normalized sample image will then share important 
statistical properties such as the mean and variance with the 
color distributions of the reference image. 

In color map normalization, a color map is first 
constructed for the reference image by creating a list of every 
unique RGB triplet that occurs within the image [4]. This 
process is repeated with the target image to create its color 
map. Quantile normalization is then used to normalize 
individual color channel distributions for the sample color 
map to the color channel distributions of the reference color 
map. 

2)  Stain Color Normalization 

Stain color normalization normalizes each stain separately 
using the following steps: (1) stain separation, (2) clustering, 
(3) multimodal color deconvolution (CVD-MM) 
normalization [5], and (4) stain combination. 

a) Stain Separation  

First, the RGB image I produced over the background I0 
is broken down into channels representing the contribution 
from each stain A. This is accomplished using a fixed optical 
density matrix Q based on the nominal color of each stain: 
hematoxylin and eosin [5, 8]. 
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b) Clustering 

Color deconvolution returns grayscale images 
corresponding to each stain, where intensity at each pixel 
represents stain intensity. Pixels may have some intensity in 
each stain channel. Various clustering methods are employed 
to separate the foreground (strong staining) and background 
(weak staining) classes for each stain. The three clustering 
algorithms are employed and compared in this study are k-
means, expectation-maximization for a Gaussian mixture, 
and variational Bayesian inference for a Gaussian mixture. 
All three clustering techniques were run with the number of 
classes constrained at k=2. 

The k-means algorithm randomly chooses two cluster 
centers, adds each of the observations to the nearest of those 
clusters, then updates the cluster center and iterates until it 
converges to a final solution when the cluster assignments no 
longer change between iterations [9]. In this implementation, 
Euclidian distances to cluster centers are used. 

The expectation-maximization algorithm used in this 
study works by estimating the mean and variance parameters 
of a mixture of two Gaussian distributions that fit the data. 
The expectation-maximization process consists of two steps. 
First, the probability that each observation falls into each 
distribution is determined and each observation is assigned a 
preliminary class based on the highest probability. The next 
step assumes that the labels assigned in the first are all true, 
and generates new parameters to best fit those classes. The 
EM algorithm used in this study is specifically fitting a 
Gaussian mixture model, rather than optimizing Euclidian 
distances to cluster centers as in k-means. 

Figure 1. Normalization algorithm candidates. All five candidate 

algorithms are compared. 
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Rather than finding an approximation of the posterior 
distribution as in expectation-maximization algorithms, the 
variational Bayesian method attempts to estimate the 
posterior distribution for all unknown variables [10]. The 
main difference between variational Bayesian and 
expectation-maximization is that variational Bayesian 
calculates the probable distributions of the variables, rather 
than estimating the parameter values (such as Gaussian 
mixture means) directly. 

Fig. 2 shows the color deconvolution and clustering 
processes for a sample image from RCC1, where the image is 
broken down into hematoxylin and eosin “channels” before 
foreground and background clustering. 

c) CVD-MM normalization 

A similar deconvolution and clustering takes place for 
both sample and reference images. Once this is done, the 
clusters of the sample image are normalized to match the 
mean and variance of those clusters found in the reference 
image by the CVD-MM method described by Magee et al. 
[5], which is conceptually similar to Reinhard’s method [7] 
implemented in a stain-specific color space. 

Reference Gaussian distributions are generated using the 
means and standard deviations from the clustering step. 
Background and foreground weights are calculated at each 
pixel by linear interpolation of the reference Gaussian 
distributions. A separate saturated-pixel weight is defined 
such that near-white pixels will not be significantly changed. 
These weights and reference distributions are combined to 
yield a normalized stain component pixel [5]. 

d) Stain Combination 

The normalized stain-domain image is then converted 
back to the RBG color space using color convolution, in an 
inverse operation of the deconvolution performed in step (a). 

E. Stain Segmentation 

Images are segmented using a four-step, supervised color 
segmentation system [4]. First, a test image is normalized to a 
standard reference image using one of the five color 
normalization methods, discussed in the previous section. 
Second, every pixel in the test image based on its RGB color 
values is classified as one the of four tissue classes using a 
supervised classifier. The system uses a 4-class linear 
discriminant (LDA) classifier, which is trained using ground 
truth labels and RGB colors values of the reference image. 

The four tissue classes refer to the hematoxylin, eosin, 
erythrocyte, and stain-free regions of the image. The first and 
second steps are repeated with ten different references 
resulting in ten slightly different segmentations. Ten top 
references are selected from the same batch using internal 
cross-validation. More details on cross-validation and 
validation are described in the next section. Third, the 
segmentation labels are combined for each pixel using max-
voting. Because images are segmented in the normalized 
color space, decision planes for each segmented tissue class 
may be irregular when transformed into the original color 
space. Therefore, to refine the segmentation in the original 
color space, a classifier is trained using the segmentation 
labels from the third step and the image’s original RGB color 
values [4]. 

F. Validation 

The normalization methods are compared using the 
performance of the color segmentation system, when images 
are normalized with any method in the first step. The 
performance is assessed for each binary combination of four 
batches, where one batch is the train set while another is the 
test set. In total, 12 cross-batch combinations are assessed 
during the validation process. 

The performance of normalization methods and classifier 
model depends on the selection of reference images. 
Therefore, multiple images are selected to avoid bias due to 
the selection of any single reference image. Cross-validation 
within a batch is used to select the top ten references for a 
batch. First, each image within the data set is used as a 
reference to normalize and segment all of the other images, 
after which the mean stain segmentation accuracy is 
recorded. This is repeated for all members of a data set, after 
which the 10 highest scoring images are saved as the 
reference set for that batch.  

III. RESULTS AND DISCUSSION 

Table 1 lists the mean and standard deviation of the 
segmentation accuracy using two global color normalization 
methods—all pixel (AP) and color map (CM)—and four 
stain color normalization methods—k-means (KM), 
expectation-maximization (EM), and variational Bayesian 
inference (VB)—for all cross-batch experiments. As reported 
in previous work as well, among global color normalization 
methods, CM performs better than AP [4]. However, in most 
cases stain color normalization methods outperform global 
color normalization methods. This was expected because 
stain color normalization normalized each stain separately 
and prevents color intermixing between stains. To more 
statistically compare these methods, Student’s t-test was 
performed between the performances using different 
normalization methods within each test case, i.e., a train and 
test batch combination. The following can be concluded 
based on t-test p-values: (1) There is no statistical difference 
between stain color normalization methods (KM, EM, and 
VB) using different clustering methods, (2) In all but one 
case (RCC2 train set and RCC1 test set), CM performs 
statistically better than or equivalent to AP, and (2) In all but 
one case (OV train set and RCC2 test set), KM performs 
statistically better than or equivalent to CM. Statistical 
significance was established using p<0.05. Fig. 3 illustrates 
qualitative differences in the segmentation masks generated 

Figure 2. Clustering comparison. A sample image from the RCC1 data 

set is segmented into hematoxylin and eosin channels. These channels 

are then separated into foreground (strong staining) background (weak 

staining) clusters by each of three clustering algorithms. 
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by the KM, EM, and VB algorithms. 

  

 Although there was no significant difference in the 
performance using either of the stain color normalization 
methods, there was a significant difference in computational 
complexity between the KM, EM, and VB clustering 

methods. To quantify the differences in performance between 
these three algorithms, a single standardized sample from the 
RCC1 data set was normalized against 10 randomly selected 
reference images, and the total time elapsed was recorded. 
The results are reported in Table 3. KM was the fastest, with 
10 normalizations taking only 29.28 seconds. It was found to 
be approximately 6.5x faster than the EM procedure and over 
17x faster than VB. Thus, based on our experiments, KM is 
clearly the ideal choice because it performs better or 
equivalent to global normalization methods and it is fastest 
among stain color normalization methods. 

IV. CONCLUSION 

Color normalization is an important quality control step 
for histopathological images to insure accurate downstream 
processing of these images. In this work, based on the 
performance of color segmentation system, five color 
normalization methods were compared. Among these 
methods, three methods were previously published but two 
were novel extensions of an existing method. One of our 
novel extensions using k-means clustering was found to be 
the optimal normalization algorithm based on high 
segmentation accuracy and low computational time. This 
preliminary study used only four batches of manually curated 
images. In future work, this work would be extended by 
evaluating several other normalization methods on more 
image batches and complete whole-slide images. 
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Table 2: Average stain segmentation accuracy using color 

deconvolution normalization (KM, EM, and VB) and quantile 

normalization (AP and CM) methods. 

Performance of KM methods are highlighted in bold red where either 

(1) performance is significantly better than all other methods for the 

particular test case, or (2) performance is not significantly different 

from any other methods. (Student’s t-tests, p-value<0.05).  
  

  

 

Testing OV GBM RCC1 RCC2 

Training Method Mean Mean Mean Mean 

OV KM   83 ± 7.2 91 ± 6.4 80 ± 12.6 

 

EM   83 ± 7.1 91 ± 6.4 80 ± 12.6 

 

VB   83 ± 7.2 90 ± 6.5 80 ± 12.6 

 AP   80 ± 11.1 78 ± 9.4 74 ± 9.2 

 CM    85 ± 7.0  87 ± 7.9  84 ± 5.9 

GBM KM 94 ± 6.5   92 ± 7.6 84 ± 10.0 

 

EM 94 ± 6.5   93 ± 7.5 84 ± 10.0 

 

VB 94 ± 6.5   92 ± 7.5 85 ± 10.0 

 AP 83 ± 7.2   84 ± 6.2 80 ± 7.6 

 CM  87 ± 5.8    87 ± 5.5  83 ± 6.1 

RCC1 KM 92 ± 4.2 87 ± 6.7   91 ± 6.8 

 

EM 92 ± 4.2 87 ± 6.7   91 ± 6.8 

 

VB 92 ± 4.2 85 ± 7.0   91 ± 6.8 

 AP 83 ± 7.8 85 ± 7.9   82 ± 7.5 

 CM 81 ± 8.9 82 ± 9.2   82 ±7.3  

RCC2 KM 91 ± 4.5 87 ± 6.5 96 ± 9.2   

 

EM 91 ± 4.5 87 ± 6.5 96 ± 9.2   

 

VB 91 ± 4.5 87 ± 6.7 95 ± 9.3   

 AP 85 ± 7.0 84 ± 8.4  88 ± 6.0   

 CM 87 ± 5.2 87 ± 7.5 84 ± 11.4   

 

Figure  3. Segmentation accuracy results for a single sample. A single 

OV sample (left column) is segmented after normalization using three 

different algorithms (rows) against three different references (columns). 

Color segmentation accuracy is shown in the top-right of each 

segmented color map. 

Table 3: Performance comparison for KM, EM, and VB 

 Method N Time (s) 

KM 10 29.28 

EM 10 190.87 

VB 10  511.80 
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